python crop_Python transforms.RandomCrop方法代码示例

本文整理汇总了Python中torchvision.transforms.RandomCrop方法的典型用法代码示例。如果您正苦于以下问题:Python transforms.RandomCrop方法的具体用法?Python transforms.RandomCrop怎么用?Python transforms.RandomCrop使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块torchvision.transforms的用法示例。

在下文中一共展示了transforms.RandomCrop方法的26个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: load_data

​点赞 6

# 需要导入模块: from torchvision import transforms [as 别名]

# 或者: from torchvision.transforms import RandomCrop [as 别名]

def load_data(data_folder, batch_size, phase='train', train_val_split=True, train_ratio=.8):

transform_dict = {

'train': transforms.Compose(

[transforms.Resize(256),

transforms.RandomCrop(224),

transforms.RandomHorizontalFlip(),

transforms.ToTensor(),

transforms.Normalize(mean=[0.485, 0.456, 0.406],

std=[0.229, 0.224, 0.225]),

]),

'test': transforms.Compose(

[transforms.Resize(224),

transforms.ToTensor(),

transforms.Normalize(mean=[0.485, 0.456, 0.406],

std=[0.229, 0.224, 0.225]),

])}

data = datasets.ImageFolder(root=data_folder, transform=transform_dict[phase])

if phase == 'train':

if train_val_split:

train_size = int(train_ratio * len(data))

test_size = len(data) - train_size

data_train, data_val = torch.utils.data.random_split(data, [train_size, test_size])

train_loader = torch.utils.data.DataLoader(data_train, batch_size=batch_size, shuffle=True, drop_last=True,

num_workers=4)

val_loader = torch.utils.data.DataLoader(data_val, batch_size=batch_size, shuffle=False, drop_last=False,

num_workers=4)

return [train_loader, val_loader]

else:

train_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, drop_last=True,

num_workers=4)

return train_loader

else:

test_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=False, drop_last=False,

num_workers=4)

return test_loader

## Below are for ImageCLEF datasets

开发者ID:jindongwang,项目名称:transferlearning,代码行数:40,

示例2: load_imageclef_train

​点赞 6

# 需要导入模块: from torchvision import transforms [as 别名]

# 或者: from torchvision.transforms import RandomCrop [as 别名]

def load_imageclef_train(root_path, domain, batch_size, phase):

transform_dict = {

'src': transforms.Compose(

[transforms.Resize((256, 256)),

transforms.RandomCrop(224),

transforms.RandomHorizontalFlip(),

transforms.ToTensor(),

transforms.Normalize(mean=[0.485, 0.456, 0.406],

std=[0.229, 0.224, 0.225]),

]),

'tar': transforms.Compose(

[transforms.Resize((224, 224)),

transforms.ToTensor(),

transforms.Normalize(mean=[0.485, 0.456, 0.406],

std=[0.229, 0.224, 0.225]),

])}

data = ImageCLEF(root_dir=root_path, domain=domain, transform=transform_dict[phase])

train_size = int(0.8 * len(data))

test_size = len(data) - train_size

data_train, data_val = torch.utils.data.random_split(data, [train_size, test_size])

train_loader = torch.utils.data.DataLoader(data_train, batch_size=batch_size, shuffle=True, drop_last=False,

num_workers=4)

val_loader = torch.utils.data.DataLoader(data_val, batch_size=batch_size, shuffle=True, drop_last=False,

num_workers=4)

return train_loader, val_loader

开发者ID:jindongwang,项目名称:transferlearning,代码行数:27,

示例3: load_imageclef_test

​点赞 6

# 需要导入模块: from torchvision import transforms [as 别名]

# 或者: from torchvision.transforms import RandomCrop [as 别名]

def load_imageclef_test(root_path, domain, batch_size, phase):

transform_dict = {

'src': transforms.Compose(

[transforms.Resize((256,256)),

transforms.RandomCrop(224),

transforms.RandomHorizontalFlip(),

transforms.ToTensor(),

transforms.Normalize(mean=[0.485, 0.456, 0.406],

std=[0.229, 0.224, 0.225]),

]),

'tar': transforms.Compose(

[transforms.Resize((224, 224)),

transforms.ToTensor(),

transforms.Normalize(mean=[0.485, 0.456, 0.406],

std=[0.229, 0.224, 0.225]),

])}

data = ImageCLEF(root_dir=root_path, domain=domain, transform=transform_dict[phase])

data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4)

return data_loader

开发者ID:jindongwang,项目名称:transferlearning,代码行数:21,

示例4: load_training

​点赞 6

# 需要导入模块: from torchvision import transforms [as 别名]

# 或者: from torchvision.transforms import RandomCrop [as 别名]

def load_training(root_path, dir, batch_size, kwargs):

transform = transforms.Compose(

[transforms.Resize([256, 256]),

transforms.RandomCrop(224),

transforms.RandomHorizontalFlip(),

transforms.ToTensor()])

data = datasets.ImageFolder(root=root_path + dir, transform=transform)

train_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, drop_last=True, **kwargs)

return train_loader

开发者ID:jindongwang,项目名称:transferlearning,代码行数:12,

示例5: main

​点赞 6

# 需要导入模块: from torchvision import transforms [as 别名]

# 或者: from torchvision.transforms import RandomCrop [as 别名]

def main():

best_acc = 0

device = 'cuda' if torch.cuda.is_available() else 'cpu'

print('==> Preparing data..')

transforms_train = transforms.Compose([

transforms.RandomCrop(32, padding=4),

transforms.RandomHorizontalFlip(),

transforms.ToTensor(),

transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])

dataset_train = CIFAR10(root='../data', train=True, download=True,

transform=transforms_train)

train_loader = DataLoader(dataset_train, batch_size=args.batch_size,

shuffle=True, num_workers=args.num_worker)

# there are 10 classes so the dataset name is cifar-10

classes = ('plane', 'car', 'bird', 'cat', 'deer',

'dog', 'frog', 'horse', 'ship', 'truck')

print('==> Making model..')

net = pyramidnet()

net = nn.DataParallel(net)

net = net.to(device)

num_params = sum(p.numel() for p in net.parameters() if p.requires_grad)

print('The number of parameters of model is', num_params)

criterion = nn.CrossEntropyLoss()

optimizer = optim.Adam(net.parameters(), lr=args.lr)

# optimizer = optim.SGD(net.parameters(), lr=args.lr,

# momentum=0.9, weight_decay=1e-4)

train(net, criterion, optimizer, train_loader, device)

开发者ID:dnddnjs,项目名称:pytorch-multigpu,代码行数:38,

示例6: cifar10

​点赞 6

# 需要导入模块: from torchvision import transforms [as 别名]

# 或者: from torchvision.transforms import RandomCrop [as 别名]

def cifar10():

transform_train = transforms.Compose([

transforms.RandomCrop(32, padding=4),

transforms.RandomHorizontalFlip(),

transforms.ToTensor(),

transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),

])

transform_test = transforms.Compose([

transforms.ToTensor(),

transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),

])

trainset = MyCIFAR10.CIFAR10(root='./data', train=True, download=True, transform=transform_train, seed=0)

valset = MyCIFAR10.CIFAR10(root='./data', train=True, download=True, transform=transform_test, seed=0)

testset = MyCIFAR10.CIFAR10(root='./data', train=False, download=True, transform=transform_test, seed=0)

net_func = MyNet.CifarAE

return net_func, trainset, valset, testset

开发者ID:sato9hara,项目名称:sgd-influence,代码行数:18,

示例7: cifar10

​点赞 6

# 需要导入模块: from torchvision import transforms [as 别名]

# 或者: from torchvision.transforms import RandomCrop [as 别名]

def cifar10():

transform_train = transforms.Compose([

transforms.RandomCrop(32, padding=4),

transforms.RandomHorizontalFlip(),

transforms.ToTensor(),

transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),

])

transform_test = transforms.Compose([

transforms.ToTensor(),

transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),

])

trainset = MyCIFAR10.CIFAR10(root='./data', train=True, download=True, transform=transform_train, seed=0)

valset = MyCIFAR10.CIFAR10(root='./data', train=True, download=True, transform=transform_test, seed=0)

testset = MyCIFAR10.CIFAR10(root='./data', train=False, download=True, transform=transform_test, seed=0)

net_func = MyNet.CifarNet

return net_func, trainset, valset, testset

开发者ID:sato9hara,项目名称:sgd-influence,代码行数:18,

示例8: get_transform

​点赞 6

# 需要导入模块: from torchvision import transforms [as 别名]

# 或者: from torchvision.transforms import RandomCrop [as 别名]

def get_transform(opt):

transform_list = []

if opt.resize_or_crop == 'resize_and_crop':

osize = [opt.loadSize, opt.loadSize]

transform_list.append(transforms.Scale(osize, Image.BICUBIC))

transform_list.append(transforms.RandomCrop(opt.fineSize))

elif opt.resize_or_crop == 'crop':

transform_list.append(transforms.RandomCrop(opt.fineSize))

elif opt.resize_or_crop == 'scale_width':

transform_list.append(transforms.Lambda(

lambda img: __scale_width(img, opt.fineSize)))

elif opt.resize_or_crop == 'scale_width_and_crop':

transform_list.append(transforms.Lambda(

lambda img: __scale_width(img, opt.loadSize)))

transform_list.append(transforms.RandomCrop(opt.fineSize))

if opt.isTrain and not opt.no_flip:

transform_list.append(transforms.RandomHorizontalFlip())

transform_list += [transforms.ToTensor(),

transforms.Normalize((0.5, 0.5, 0.5),

(0.5, 0.5, 0.5))]

return transforms.Compose(transform_list)

开发者ID:aayushbansal,项目名称:Recycle-GAN,代码行数:25,

示例9: transform

​点赞 6

# 需要导入模块: from torchvision import transforms [as 别名]

# 或者: from torchvision.transforms import RandomCrop [as 别名]

def transform(is_train=True, normalize=True):

"""

Returns a transform object

"""

filters = []

filters.append(Scale(256))

if is_train:

filters.append(RandomCrop(224))

else:

filters.append(CenterCrop(224))

if is_train:

filters.append(RandomHorizontalFlip())

filters.append(ToTensor())

if normalize:

filters.append(Normalize(mean=[0.485, 0.456, 0.406],

std=[0.229, 0.224, 0.225]))

return Compose(filters)

开发者ID:uwnlp,项目名称:verb-attributes,代码行数:22,

示例10: initialize_dataset

​点赞 6

# 需要导入模块: from torchvision import transforms [as 别名]

# 或者: from torchvision.transforms import RandomCrop [as 别名]

def initialize_dataset(clevr_dir, dictionaries, state_description=True):

if not state_description:

train_transforms = transforms.Compose([transforms.Resize((128, 128)),

transforms.Pad(8),

transforms.RandomCrop((128, 128)),

transforms.RandomRotation(2.8), # .05 rad

transforms.ToTensor()])

test_transforms = transforms.Compose([transforms.Resize((128, 128)),

transforms.ToTensor()])

clevr_dataset_train = ClevrDataset(clevr_dir, True, dictionaries, train_transforms)

clevr_dataset_test = ClevrDataset(clevr_dir, False, dictionaries, test_transforms)

else:

clevr_dataset_train = ClevrDatasetStateDescription(clevr_dir, True, dictionaries)

clevr_dataset_test = ClevrDatasetStateDescription(clevr_dir, False, dictionaries)

return clevr_dataset_train, clevr_dataset_test

开发者ID:mesnico,项目名称:RelationNetworks-CLEVR,代码行数:20,

示例11: cifar10_train_transform

​点赞 6

# 需要导入模块: from torchvision import transforms [as 别名]

# 或者: from torchvision.transforms import RandomCrop [as 别名]

def cifar10_train_transform(ds_metainfo,

mean_rgb=(0.4914, 0.4822, 0.4465),

std_rgb=(0.2023, 0.1994, 0.2010),

jitter_param=0.4):

assert (ds_metainfo is not None)

assert (ds_metainfo.input_image_size[0] == 32)

return transforms.Compose([

transforms.RandomCrop(

size=32,

padding=4),

transforms.RandomHorizontalFlip(),

transforms.ColorJitter(

brightness=jitter_param,

contrast=jitter_param,

saturation=jitter_param),

transforms.ToTensor(),

transforms.Normalize(

mean=mean_rgb,

std=std_rgb)

])

开发者ID:osmr,项目名称:imgclsmob,代码行数:22,

示例12: init_dataset

​点赞 6

# 需要导入模块: from torchvision import transforms [as 别名]

# 或者: from torchvision.transforms import RandomCrop [as 别名]

def init_dataset():

transform_train = transforms.Compose(

[transforms.Resize(256),

transforms.RandomCrop(227),

transforms.RandomHorizontalFlip(),

transforms.ToTensor(),

transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])

transform_test = transforms.Compose(

[transforms.Resize(227),

transforms.ToTensor(),

transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])

trainset = datasets.CIFAR10(root='./data', train=True, download=True,

transform=transform_train)

trainloader = torch.utils.data.DataLoader(trainset, batch_size=128,

shuffle=True, num_workers=0)

testset = datasets.CIFAR10(root='./data', train=False, download=True,

transform=transform_test)

testloader = torch.utils.data.DataLoader(testset, batch_size=100,

shuffle=True, num_workers=0)

return trainloader, testloader

开发者ID:flyingpot,项目名称:pytorch_deephash,代码行数:23,

示例13: _data_transforms_cifar10

​点赞 6

# 需要导入模块: from torchvision import transforms [as 别名]

# 或者: from torchvision.transforms import RandomCrop [as 别名]

def _data_transforms_cifar10(cutout_size):

CIFAR_MEAN = [0.49139968, 0.48215827, 0.44653124]

CIFAR_STD = [0.24703233, 0.24348505, 0.26158768]

train_transform = transforms.Compose([

transforms.RandomCrop(32, padding=4),

transforms.RandomHorizontalFlip(),

transforms.ToTensor(),

transforms.Normalize(CIFAR_MEAN, CIFAR_STD),

])

if cutout_size is not None:

train_transform.transforms.append(Cutout(cutout_size))

valid_transform = transforms.Compose([

transforms.ToTensor(),

transforms.Normalize(CIFAR_MEAN, CIFAR_STD),

])

return train_transform, valid_transform

开发者ID:renqianluo,项目名称:NAO_pytorch,代码行数:20,

示例14: __init__

​点赞 6

# 需要导入模块: from torchvision import transforms [as 别名]

# 或者: from torchvision.transforms import RandomCrop [as 别名]

def __init__(self, noisy_dir, crop_size, upscale_factor=4, cropped=False, flips=False, rotations=False, **kwargs):

super(TrainDataset, self).__init__()

# get all directories used for training

if isinstance(noisy_dir, str):

noisy_dir = [noisy_dir]

self.files = []

for n_dir in noisy_dir:

self.files += [join(n_dir, x) for x in listdir(n_dir) if utils.is_image_file(x)]

# intitialize image transformations and variables

self.input_transform = T.Compose([

T.RandomVerticalFlip(0.5 if flips else 0.0),

T.RandomHorizontalFlip(0.5 if flips else 0.0),

T.RandomCrop(crop_size)

])

self.crop_transform = T.RandomCrop(crop_size // upscale_factor)

self.upscale_factor = upscale_factor

self.cropped = cropped

self.rotations = rotations

开发者ID:ManuelFritsche,项目名称:real-world-sr,代码行数:20,

示例15: _data_transforms_cifar10

​点赞 6

# 需要导入模块: from torchvision import transforms [as 别名]

# 或者: from torchvision.transforms import RandomCrop [as 别名]

def _data_transforms_cifar10(cutout=False, cutout_length=16):

CIFAR_MEAN = [0.49139968, 0.48215827, 0.44653124]

CIFAR_STD = [0.24703233, 0.24348505, 0.26158768]

train_transform = transforms.Compose([

transforms.RandomCrop(32, padding=4),

transforms.RandomHorizontalFlip(),

transforms.ToTensor(),

transforms.Normalize(CIFAR_MEAN, CIFAR_STD),

])

if cutout:

train_transform.transforms.append(Cutout(cutout_length))

valid_transform = transforms.Compose([

transforms.ToTensor(),

transforms.Normalize(CIFAR_MEAN, CIFAR_STD),

])

return train_transform, valid_transform

开发者ID:shirakawas,项目名称:ASNG-NAS,代码行数:20,

示例16: cifar_loaders

​点赞 6

# 需要导入模块: from torchvision import transforms [as 别名]

# 或者: from torchvision.transforms import RandomCrop [as 别名]

def cifar_loaders(batch_size, shuffle_test=False):

normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],

std=[0.225, 0.225, 0.225])

train = datasets.CIFAR10('./data', train=True, download=True,

transform=transforms.Compose([

transforms.RandomHorizontalFlip(),

transforms.RandomCrop(32, 4),

transforms.ToTensor(),

normalize,

]))

test = datasets.CIFAR10('./data', train=False,

transform=transforms.Compose([transforms.ToTensor(), normalize]))

train_loader = torch.utils.data.DataLoader(train, batch_size=batch_size,

shuffle=True, pin_memory=True)

test_loader = torch.utils.data.DataLoader(test, batch_size=batch_size,

shuffle=shuffle_test, pin_memory=True)

return train_loader, test_loader

开发者ID:locuslab,项目名称:convex_adversarial,代码行数:19,

示例17: init_learning

​点赞 6

# 需要导入模块: from torchvision import transforms [as 别名]

# 或者: from torchvision.transforms import RandomCrop [as 别名]

def init_learning(self, model, criterion):

if self._state('train_transform') is None:

self.state['train_transform'] = transforms.Compose([

Warp(self.state['image_size'] + 30),

transforms.RandomCrop(self.state['image_size']),

transforms.RandomHorizontalFlip(),

lambda x: torch.from_numpy(np.array(x)).permute(2, 0, 1).float(),

lambda x: x.index_select(0, torch.LongTensor([2,1,0])),

lambda x: x - torch.Tensor(model.image_normalization_mean).view(3, 1, 1),

])

if self._state('val_transform') is None:

self.state['val_transform'] = transforms.Compose([

Warp(self.state['image_size']),

lambda x: torch.from_numpy(np.array(x)).permute(2, 0, 1).float(),

lambda x: x.index_select(0, torch.LongTensor([2,1,0])),

lambda x: x - torch.Tensor(model.image_normalization_mean).view(3, 1, 1),

])

self.state['best_score'] = 0

开发者ID:yeezhu,项目名称:SPN.pytorch,代码行数:22,

示例18: __init__

​点赞 6

# 需要导入模块: from torchvision import transforms [as 别名]

# 或者: from torchvision.transforms import RandomCrop [as 别名]

def __init__(self, opt):

self.image_path = opt.dataroot

self.is_train = opt.is_train

self.d_num = opt.n_attribute

print ('Start preprocessing dataset..!')

random.seed(1234)

self.preprocess()

print ('Finished preprocessing dataset..!')

if self.is_train:

trs = [transforms.Resize(opt.load_size, interpolation=Image.ANTIALIAS), transforms.RandomCrop(opt.fine_size)]

else:

trs = [transforms.Resize(opt.load_size, interpolation=Image.ANTIALIAS), transforms.CenterCrop(opt.fine_size)]

if opt.is_flip:

trs.append(transforms.RandomHorizontalFlip())

self.transform = transforms.Compose(trs)

self.norm = transforms.Compose([

transforms.ToTensor(),

transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

self.num_data = max(self.num)

开发者ID:Xiaoming-Yu,项目名称:DMIT,代码行数:21,

示例19: __init__

​点赞 6

# 需要导入模块: from torchvision import transforms [as 别名]

# 或者: from torchvision.transforms import RandomCrop [as 别名]

def __init__(self, opt):

'''Initialize this dataset class.

We need to specific the path of the dataset and the domain label of each image.

'''

self.image_list = []

self.label_list = []

if opt.is_train:

trs = [transforms.Resize(opt.load_size, interpolation=Image.ANTIALIAS), transforms.RandomCrop(opt.fine_size)]

else:

trs = [transforms.Resize(opt.load_size, interpolation=Image.ANTIALIAS), transforms.CenterCrop(opt.fine_size)]

if opt.is_flip:

trs.append(transforms.RandomHorizontalFlip())

trs.append(transforms.ToTensor())

trs.append(transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)))

self.transform = transforms.Compose(trs)

self.num_data = len(self.image_list)

开发者ID:Xiaoming-Yu,项目名称:DMIT,代码行数:18,

示例20: load_training

​点赞 5

# 需要导入模块: from torchvision import transforms [as 别名]

# 或者: from torchvision.transforms import RandomCrop [as 别名]

def load_training(root_path, dir, batch_size, kwargs):

transform = transforms.Compose(

[transforms.Resize([256, 256]),

transforms.RandomCrop(224),

transforms.RandomHorizontalFlip(),

transforms.ToTensor()])

data = datasets.ImageFolder(root=root_path + dir, transform=transform)

train_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, drop_last=True, **kwargs)

return train_loader

开发者ID:jindongwang,项目名称:transferlearning,代码行数:11,

示例21: scale_random_crop

​点赞 5

# 需要导入模块: from torchvision import transforms [as 别名]

# 或者: from torchvision.transforms import RandomCrop [as 别名]

def scale_random_crop(input_size, scale_size=None, normalize=__imagenet_stats):

t_list = [

transforms.RandomCrop(input_size),

transforms.ToTensor(),

transforms.Normalize(**normalize),

]

if scale_size != input_size:

t_list = [transforms.Scale(scale_size)] + t_list

transforms.Compose(t_list)

开发者ID:JiaRenChang,项目名称:PSMNet,代码行数:12,

示例22: pad_random_crop

​点赞 5

# 需要导入模块: from torchvision import transforms [as 别名]

# 或者: from torchvision.transforms import RandomCrop [as 别名]

def pad_random_crop(input_size, scale_size=None, normalize=__imagenet_stats):

padding = int((scale_size - input_size) / 2)

return transforms.Compose([

transforms.RandomCrop(input_size, padding=padding),

transforms.RandomHorizontalFlip(),

transforms.ToTensor(),

transforms.Normalize(**normalize),

])

开发者ID:JiaRenChang,项目名称:PSMNet,代码行数:10,

示例23: _get_dataloaders

​点赞 5

# 需要导入模块: from torchvision import transforms [as 别名]

# 或者: from torchvision.transforms import RandomCrop [as 别名]

def _get_dataloaders(self, num_workers, shuffle_train=True):

assert self.config_dl.train_imgs_glob is not None

print('Cropping to {}'.format(self.config_dl.crop_size))

to_tensor_transform = transforms.Compose(

[transforms.RandomCrop(self.config_dl.crop_size),

transforms.RandomHorizontalFlip(),

images_loader.IndexImagesDataset.to_tensor_uint8_transform()])

# NOTE: if there are images in your training set with dimensions <128, training will abort at some point,

# because the cropper failes. See REAME, section about data preparation.

min_size = self.config_dl.crop_size

ds_train = images_loader.IndexImagesDataset(

images=images_loader.ImagesCached(

self.config_dl.train_imgs_glob,

self.config_dl.image_cache_pkl,

min_size=min_size),

to_tensor_transform=to_tensor_transform)

dl_train = DataLoader(ds_train, self.config_dl.batchsize_train, shuffle=shuffle_train,

num_workers=num_workers)

print('Created DataLoader [train] {} batches -> {} imgs'.format(

len(dl_train), self.config_dl.batchsize_train * len(dl_train)))

ds_val = self._get_ds_val(

self.config_dl.val_glob,

crop=self.config_dl.crop_size,

truncate=self.config_dl.num_val_batches * self.config_dl.batchsize_val)

dl_val = DataLoader(

ds_val, self.config_dl.batchsize_val, shuffle=False,

num_workers=num_workers, drop_last=True)

print('Created DataLoader [val] {} batches -> {} imgs'.format(

len(dl_val), self.config_dl.batchsize_train * len(dl_val)))

return dl_train, dl_val

开发者ID:fab-jul,项目名称:L3C-PyTorch,代码行数:35,

示例24: main

​点赞 5

# 需要导入模块: from torchvision import transforms [as 别名]

# 或者: from torchvision.transforms import RandomCrop [as 别名]

def main():

best_acc = 0

device = 'cuda' if torch.cuda.is_available() else 'cpu'

print('==> Preparing data..')

transforms_train = transforms.Compose([

transforms.RandomCrop(32, padding=4),

transforms.RandomHorizontalFlip(),

transforms.ToTensor(),

transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])

dataset_train = CIFAR10(root='../data', train=True, download=True,

transform=transforms_train)

train_loader = DataLoader(dataset_train, batch_size=args.batch_size,

shuffle=True, num_workers=args.num_worker)

# there are 10 classes so the dataset name is cifar-10

classes = ('plane', 'car', 'bird', 'cat', 'deer',

'dog', 'frog', 'horse', 'ship', 'truck')

print('==> Making model..')

net = pyramidnet()

net = net.to(device)

num_params = sum(p.numel() for p in net.parameters() if p.requires_grad)

print('The number of parameters of model is', num_params)

criterion = nn.CrossEntropyLoss()

optimizer = optim.SGD(net.parameters(), lr=args.lr,

momentum=0.9, weight_decay=1e-4)

train(net, criterion, optimizer, train_loader, device)

开发者ID:dnddnjs,项目名称:pytorch-multigpu,代码行数:36,

示例25: check_dataset

​点赞 5

# 需要导入模块: from torchvision import transforms [as 别名]

# 或者: from torchvision.transforms import RandomCrop [as 别名]

def check_dataset(opt):

normalize_transform = transforms.Compose([transforms.ToTensor(),

transforms.Normalize((0.485, 0.456, 0.406),

(0.229, 0.224, 0.225))])

train_large_transform = transforms.Compose([transforms.RandomResizedCrop(224),

transforms.RandomHorizontalFlip()])

val_large_transform = transforms.Compose([transforms.Resize(256),

transforms.CenterCrop(224)])

train_small_transform = transforms.Compose([transforms.Pad(4),

transforms.RandomCrop(32),

transforms.RandomHorizontalFlip()])

splits = check_split(opt)

if opt.dataset in ['cub200', 'indoor', 'stanford40', 'dog']:

train, val = 'train', 'test'

train_transform = transforms.Compose([train_large_transform, normalize_transform])

val_transform = transforms.Compose([val_large_transform, normalize_transform])

sets = [dset.ImageFolder(root=os.path.join(opt.dataroot, train), transform=train_transform),

dset.ImageFolder(root=os.path.join(opt.dataroot, train), transform=val_transform),

dset.ImageFolder(root=os.path.join(opt.dataroot, val), transform=val_transform)]

sets = [FolderSubset(dataset, *split) for dataset, split in zip(sets, splits)]

opt.num_classes = len(splits[0][0])

else:

raise Exception('Unknown dataset')

loaders = [torch.utils.data.DataLoader(dataset,

batch_size=opt.batchSize,

shuffle=True,

num_workers=0) for dataset in sets]

return loaders

开发者ID:alinlab,项目名称:L2T-ww,代码行数:35,

示例26: mnist

​点赞 5

# 需要导入模块: from torchvision import transforms [as 别名]

# 或者: from torchvision.transforms import RandomCrop [as 别名]

def mnist():

transform_train = transforms.Compose([

transforms.RandomCrop(28, padding=2),

transforms.ToTensor(),

transforms.Normalize((0.5,), (0.5,)),

])

transform_test = transforms.Compose([

transforms.ToTensor(),

transforms.Normalize((0.5,), (0.5,)),

])

trainset = MyMNIST.MNIST(root='./data', train=True, download=True, transform=transform_train, seed=0)

valset = MyMNIST.MNIST(root='./data', train=True, download=True, transform=transform_test, seed=0)

testset = MyMNIST.MNIST(root='./data', train=False, download=True, transform=transform_test, seed=0)

net_func = MyNet.MnistAE

return net_func, trainset, valset, testset

开发者ID:sato9hara,项目名称:sgd-influence,代码行数:17,

注:本文中的torchvision.transforms.RandomCrop方法示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。

你可能感兴趣的:(python,crop)