比赛链接
感谢出题人手下留情,第一次补完所有题,着实开心。
个人感觉这场比赛题目难度大概对应CF的div3吧。
第一题本来打算开它的,两分钟没啥头绪,就跳了。赛后看大佬们的代码,好家伙,我直接好家伙,上来就是暴力,先切2047次,把蛋糕切成2048块(也就是2的16次方,比题目要求的15次方大就行),然后嘛就按照题目意思去解方程:|x/2048-1/k|<=1/2^10,最后循环k次,每次将x个蛋糕打包。循环的时候用到了左移位,不太懂位运算的同学可以参考这篇博客(click here),里面介绍的很全哦~。
int main() {
int k;
cin >> k;
cout << k + 2047 << endl;
for (int i = 0; i < 11; i++)
for (int j = 1; j <= (1<<i); j++)
cout << 1 << ' ' << i << endl;
int x = (1<<11) / k;
for (int i = 1; i <= k; i++) {
cout << 2 << ' ' << x << ' ';
for (int j = 1; j <= x; j++) cout << "11 ";
cout << endl;
}
return 0;
}
就是要求能被k整除的最大连续子数组的长度嘛。数据范围这么大,暴力必TLE。可以先用sum[]去记录前i项的和。假设前m项的和取模k得到x, 前n项的和取模k得到的也是 x, 那么m+1-n这个子序列的和肯定是能够被k整除的。想到这个那么问题就很简单了。
ll a[100005], sum[100005];
ll pos[100005];
int main() {
int t;
cin >> t;
while (t--) {
int n, k;
cin >> n >> k;
for (int i = 1; i <= n; i++) {
cin >> a[i];
sum[i] = sum[i-1] + a[i];
}
mem(pos, INF);
ll ans = -1;
for (int i = 1; i <= n; i++) {
ll m = sum[i] % k;
if (m == 0) ans = max(ans, 1ll*i);
if (pos[m] != INF) ans = max(ans, i - pos[m]);
pos[m] = min(pos[m], 1ll*i);
}
cout << ans << endl;
}
return 0;
}
直接记录每段非降序子数组长度,然后(1+len)*len/2求出该段对应个数累加即可。
struct node {
ll len;
}e[100005];
ll sum(ll len) {
return (1+len)*len/2;
}
ll a[100005];
int main() {
int n, id = 1, pos = 1;
cin >> n;
for (int i = 1; i <= n; i++) {
cin >> a[i];
e[i].len = 1;
}
a[n+1] = -INF;
for (int i = 1; i <= n; i++)
if (a[i]<=a[i+1]) {
e[id].len++;
} else id++;
ll ans = 0;
for (int i = 1; i < id; i++)
ans += sum(e[i].len);
cout << ans << endl;
return 0;
}
巴什博弈,老经典的博弈入门题了,只是把取光者剩改成取最后一个败,其实原理是一样的。对于这题来说,n % (k + 1) == 1就是一个必败点嘛。
int main() {
int t;
cin >> t;
while (t--) {
int n, k;
cin >> n >> k;
if (n == 1) cout << "ma la se mi no.1!" << endl;
else if (n <= k)
cout << "yo xi no forever!" << endl;
else {
int tmp = n % (k + 1);
if( tmp == 1 )
cout << "ma la se mi no.1!" << endl;
else
cout << "yo xi no forever!" << endl;
}
}
return 0;
}
两堆石子,一堆k-1,另一堆n-k,先取到任意一堆的最后一个输,emm,这不是威佐夫博弈嘛。啪的一下就AC了,很快啊~
const double GSR=(1+sqrt(5.0))/2;
int main() {
int t;
cin >> t;
while (t--) {
int n, k;
cin >> n >> k;
int a = k-1, b = n-k;
if(a > b) swap(a, b);
if(a == (int)(GSR*(b-a)))
cout << "ma la se mi no.1!" << endl;
else
cout << "yo xi no forever!" << endl;
}
return 0;
}
交了一发暴力,先TLE为敬。然后就掏出了C with STL的传统艺能map+set,想着应该能过,结果还是TLE了,补题的时候才发现。。。把endl改成"\n"直接就能过,emm,这又是什么玄学,然后听说endl要比"\n"慢一些,然后嘛。。。反手就加了一句
#define endl “\n”
(毕竟疯起来连int都define成longlong手动狗头)
struct node {
string name;
int grade, sex, sno;
}s[100005];
int cmp(node a, node b) {
return a.name<b.name;
}
map<string, node> m;
set<string> se[200];
int main() {
int n;
cin >> n;
for (int i = 0; i < n; i++)
cin >> s[i].name >> s[i].grade >> s[i].sex >> s[i].sno;
sort(s, s+n, cmp);
for (int i = 0; i < n; i++) {
m[s[i].name] = s[i];
se[s[i].grade].insert(s[i].name);
}
int t;
cin >> t;
while (t--) {
int op;
cin >> op;
if (op == 1) {
string str;
cin >> str;
node tmp = m[str];
if (tmp.sno != 0) {
cout << tmp.grade << ' ' << tmp.sno << ' ' << tmp.sex <<endl;
}
} else {
int grade;
cin >> grade;
set<string>::iterator it;
it = se[grade].begin();
for(;it!=se[grade].end();it++)
cout<<*it<<endl;
}
}
return 0;
}
假设派蒙的位置为p,那如果p-1>k(这种情况下循环不足一个周期),那就意味着还没轮到他就已经没了(他前面那个人洗碗),或者(循环了至少一个周期)左边人的最大总和要小于k,这种情况下还是轮不到他洗碗。至于其余情况,则他必洗碗。
ll s[100005];
int main(){
int q;
cin >> q;
while (q--) {
int n, k;
cin >> n >> k;
int m = 0, p;
for (int i = 1; i <= n; i++) {
int x;
cin >> x;
if (x > m) {
m = x;
p = i;
}
s[i] = s[i-1] + x;
}
if (p > k+1 || (s[n] >= k && s[p-1] < k)) cout << "NO" << endl;
else cout << "YES" << endl;
}
return 0;
}
直接根据题目给出来的公式写个dfs就行了。
const ll mod = 998244353;
ll dfs(int n, int m) {
if (n == 1 && m == 0) return 2;
if (n == 0 && m >= 0) return 1;
if (n >= 2 && m == 0) return n+2;
if (m == 1) return (2*n)%mod;
return dfs(dfs(n-1, m), m-1)%mod;
}
int main() {
int t;
cin >> t;
while (t--) {
int n, m;
cin >> n >> m;
cout << dfs(n, m) % mod << endl;
}
return 0;
}
emm,等比数列前n项和,直接暴力遍历一遍(总共才15天嘛)。
int qpow(int a, int n) {
int ans = 1, base = a ;
while (n) {
if (n & 1)
ans = (ans * base) ;
base = (base * base);
n >>= 1;
}
return ans;
}
int main() {
int t, n;
cin >> t;
while (t--) {
cin >> n;
int flag = 0;
for (int i = 2; i <= 15; i++) {
int k = pow(2,i)-1;
if (n%k == 0) {
flag = 1;
break;
}
}
if (flag) cout << "YES" << endl;
else cout << "NO" << endl;
}
return 0;
}
正如题名所述,”这是一道简单的模拟“,出题人诚不欺我。照着题目要求码一遍就好了,如果WA了,就多看几遍题目。
int mp[305][305];
int a[2005], v[305];
int main() {
int N, M;
cin >> N >> M;
mem(mp, -1);
for (int i = 0; i < M; i++) {
int u, v, w;
cin >> u >> v >> w;
mp[u][v] = mp[v][u] = w;
}
int k, ans = INF;
cin >> k;
for (int j = 0; j < k; j++) {
mem(v, 0);
mem(a, 0);
int n, bol = 1;
cin >> n;
for (int i = 1; i <= n; i++) {
cin >> a[i];
v[a[i]]++;
if (v[a[i]]>1) bol = 0;
}
for (int i = 1; i <= N; i++) {
if (v[i] != 1) {
bol = 0;
break;
}
}
if (bol == 0) continue;
bol = 1;
int sum = 0;
a[0] = a[n+1] = 0;
for (int i = 1; i <= n+1; i++) {
if (mp[a[i]][a[i-1]] == -1) {
bol = 0;
break;
} else {
sum += mp[a[i-1]][a[i]];
}
}
if (bol) {
ans = min(ans, sum);
}
}
if (ans != INF) cout << ans << endl;
else cout << -1 << endl;
return 0;
}
感觉这和上一题差不多,就差把 ”这是道模拟题“ 写在题面上了。对着题目要求直接码一遍就行了。
char s1[100],s2[100],s3[100];
int main() {
cin >> s1;
int l = 0, r = 0, len = strlen(s1);
for (int i = 0; i < len; i++)
if (s1[i] >= '0' && s1[i] <= '9') s2[l++] = s1[i];
else s3[r++] = s1[i];
for (int i = 0; i < r; i++) {
if (s3[i] >= 'a' && s3[i] <= 'z') {
s3[i] -= 'a';
s3[i] = s3[i] + s2[i] - '0';
if (s3[i] >= 26) {
s3[i] %= 26;
if (s3[i] == 25) s3[i] = 'b';
else s3[i] += 'B';
} else s3[i] += 'a';
} else {
s3[i] -= 'A';
s3[i] = s3[i] + s2[i] - '0';
if (s3[i] >= 26) {
s3[i] %= 26;
if (s3[i] == 25) s3[i] = 'B';
else s3[i] += 'b';
} else s3[i] += 'A';
}
}
for (int j = 4; j <= 16; j += 4)
for (int i = j-1; i >= j-4; i--)
cout << s3[i];
return 0;
}
先用节点存城市与城市之间的距离(sum)、被分成段的长度(val)以及它们之间站台数+1(len)。然后拿优先队列存节点,按val降序排列。循环k次每次取val最大的,并弹出节点,len++,更新val(val=sum/len),再把新的节点push进去,最后队顶的val就是答案(当然啦,如果最后的val是小数,那么结果应该是val的整数部分+1)。
struct node {
friend bool operator< (node a, node b) {
return a.val < b.val;
}
ll len;
long double val, sum;
};
priority_queue<node> q;
ll dt[100005], a[100005];
int main() {
int n, k;
cin >> n >> k;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
sort(a, a+n);
for (int i = 1; i < n; i++)
dt[i] = a[i]-a[i-1];
for (int i = 1; i < n; i++) {
node tmp;
tmp.val = tmp.sum = dt[i];
tmp.len = 1;
q.push(tmp);
}
while (k--) {
node tmp = q.top();
q.pop();
tmp.len++;
tmp.val = tmp.sum/tmp.len;
q.push(tmp);
}
node ans = q.top();
ll key = (ll)ans.val;
if (ans.val == key) cout << key << endl;
else cout << key+1 << endl;
return 0;
}