1、灰度图像:
方法1:
读取图片是直接利用cv2.imread(),
用于读取图片文件
imread函数有两个参数,第一个参数是图片路径,第二个参数表示读取图片的形式,有三种:
cv2.IMREAD_COLOR:加载彩色图片,这个是默认参数,可以直接写1。
cv2.IMREAD_GRAYSCALE:以灰度模式加载图片,可以直接写0。
cv2.IMREAD_UNCHANGED:包括alpha,可以直接写-1
import cv2
img = cv2.imread("xx.jpg",0)#1彩色图片,0灰色图片
cv2.imshow("Img",img)
cv2.waitKey(0)
cv2.destroyAllWindows()
方法2:
利用颜色空间转换,将BGR转为GRAY
import cv2
img = cv2.imread("xx.jpg",1)#1彩色图片,0灰色图片
cv2.imshow("Img",img)
dst = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
cv2.imshow("dst",dst)
cv2.waitKey(0)
cv2.destroyAllWindows()
方法3:
利用矩阵遍历的方法,处理每一个像素点
#灰度图像实现
#灰度图像 R=G=B
import cv2
import numpy as np
img = cv2.imread("xx.jpg",1)#1彩色图片,0灰色图片
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
deep = imgInfo[2]
print(imgInfo)
dst = np.zeros((height,width,3),np.uint8)
for i in range(0,height):
for j in range(0,width):
(b,g,r)=img[i,j]
gray = (int(b)+int(g)+int(r))/3#数据转换,防止数据越界
dst[i,j]=np.uint8(gray)
cv2.imshow("img",img)
cv2.imshow("dst",dst)
cv2.waitKey(0)
cv2.destroyAllWindows()
方法4
灰度计算公式 gray = r0.299+g0.587+b*0.114
import cv2
import numpy as np
img = cv2.imread("xx.jpg",1)#1彩色图片,0灰色图片
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
deep = imgInfo[2]
print(imgInfo)
dst = np.zeros((height,width,3),np.uint8)
for i in range(0,height):
for j in range(0,width):
(b,g,r)=img[i,j]
b = int(b)#数据转换,防止数据越界
g = int(g)
r = int(r)
gray = r*0.299+g*0.587+b*0.114
dst[i,j]=np.uint8(gray)
cv2.imshow("img",img)
cv2.imshow("dst",dst)
cv2.waitKey(0)
cv2.destroyAllWindows()
2、颜色反转
1、灰度图像的颜色反转:
原理:反转图像的灰度值 = 255-原图像灰度值
import cv2
import numpy as np
img = cv2.imread("xx.jpg",1)#1彩色图片,0灰色图片
cv2.imshow("Img",img)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
cv2.imshow("Dst1",gray)
dst= np.zeros((height,width,1),np.uint8)
for i in range(0,height):
for j in range(0,width):
grayPixel = gray[i,j]
dst[i,j]=255-grayPixel
cv2.imshow("Dst2",dst)
cv2.waitKey(0)
cv2.destroyAllWindows()
运行效果:
2、彩色图像的颜色反转
原理:反转图像的值 = 255-原图像值
import cv2
import numpy as np
img = cv2.imread("xx.jpg",1)#1彩色图片,0灰色图片
cv2.imshow("Img",img)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
dst= np.zeros((height,width,3),np.uint8)#一个像素值由三个通道组成
for i in range(0,height):
for j in range(0,width):
(b,g,r) = img[i,j]
dst[i,j]= (255-b,255-g,255-r)
cv2.imshow("Dst",dst)
cv2.waitKey(0)
cv2.destroyAllWindows()
原理:(待补充)
import cv2
img = cv2.imread("xx.jpg",1)#1彩色图片,0灰色图片
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
for m in range(50,180):
for n in range(50,180):
if m%10==0 and n%10==0:
for i in range(0,10):
for j in range(0,10):
(b,g,r)=img[m,n]
img[i+m,j+n]=(b,g,r)
cv2.imshow("Img",img)
cv2.waitKey(0)
cv2.destroyAllWindows()
方法1:opencv——API实现:
import cv2
img = cv2.imread("xx.jpg",1)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
cv2.imshow("img",img)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)#gray处理
imaG = cv2.GaussianBlur(gray,(3,3),0)#滤波
dst = cv2.Canny(img,100,100)#50 50阈值
#图片卷积 >th ->边缘点
cv2.imshow("Dst",dst)
cv2.waitKey(0)
cv2.destroyAllWindows()
方法2:opencv——原理实现:
原理:待补充
import cv2
import numpy as np
import math
img = cv2.imread("xx.jpg",1)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
cv2.imshow("img",img)
#soble 1算子模板 2图片卷积 3阈值判决
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)#gray
cv2.imshow("Dst1",gray)
dst = np.zeros((height,width,1),np.uint8)
for i in range(0,height-2):
for j in range(0,width-2):
gy = gray[i,j]+gray[i,j+1]*2+gray[i,j+2]-gray[i+2,j]-gray[i+2,j+1]*2-gray[i+2,j+2]
gx = gray[i,j]+gray[i+1,j]*2+gray[i+2,j]-gray[i,j+2]-gray[i+1,j+2]*2-gray[i+2,j+2]
grad = math.sqrt(gy*gy+gx*gx)
if grad>100:
dst[i,j]=255
else:
dst[i,j]=0
cv2.imshow("Dst2",dst)
cv2.waitKey(0)
cv2.destroyAllWindows()
import cv2
import numpy as np
img = cv2.imread("xx.jpg",1)
cv2.imshow("img",img)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
cv2.imshow("gray",gray)
dst = np.zeros((height,height,1),np.uint8)
for i in range(0,height):
for j in range(0,width-1):
grayP0 = int(gray[i,j])
grayP1 = int(gray[i,j+1])
newP = grayP0-grayP1+150
if newP>255:
newP = 255
if newP<0:
newP = 0
dst[i,j]=newP
cv2.imshow("dst",dst)
cv2.waitKey(0)
cv2.destroyAllWindows()
6、油画效果
实现原理:待补充
import cv2
import numpy as np
img = cv2.imread("xx.jpg",1)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
cv2.imshow("img",img)
#1gray 2
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
cv2.imshow("gray",gray)
dst = np.zeros((height,width,3),np.uint8)
#4*4
for i in range(4,height-4):
for j in range(4,width-4):
array1 = np.zeros(8,np.uint8)
for m in range(-4,4):
for n in range(-4,4):
p1 = int(gray[i+m,j+n]/32)
array1[p1]=array1[p1]+1
currentMax = array1[0]
l = 0
for k in range(0,8):
if currentMax<array1[k]:
currentMax = array1[k]
l = k
for m in range(-4,4):
for n in range(-4,4):
if gray[i+m,j+n]>=32 and gray[i+m,j+n]<=(1+1)*32:
(b,g,r) = img[i+m,j+n]
dst[i,j] = (b,g,r)
cv2.imshow("dst",dst)
cv2.waitKey(0)
cv2.destroyAllWindows()
实现原理:
个人理解:实际是增强某种颜色
import cv2
import numpy as np
img = cv2.imread("xx.jpg",1)
imgInfo = img.shape
height = imgInfo[0]
width = imgInfo[1]
cv2.imshow("img",img)
dst = np.zeros((height,width,3),np.uint8)
for i in range(0,height):
for j in range(0,width):
(b,g,r) = img[i,j] #读取bgr
b = b*1.5
g = g*1.3
if b>255:
b = 255
if g>255:
g = 255
dst[i,j] = (b,g,r)
cv2.imshow("Dst",dst)
cv2.waitKey(0)
cv2.destroyAllWindows()