单词意思就可以理解:
bucket:桶
就是对我们的数据进行分组;
sql中相当于:group by user_id
metric:度量标准
就是对一个数据分组执行的某种聚合分析的操作,比如说求平均值,求最大值,求最小值;
以一个家电卖场中的电视销售数据为背景,来对各种品牌,各种颜色的电视的销量和销售额,进行各种各样角度的分析
//添加一组数据:
PUT /tvs
{
"mappings": {
"sales": {
"properties": {
"price": {
"type": "long"
},
"color": {
"type": "keyword"
},
"brand": {
"type": "keyword"
},
"sold_date": {
"type": "date"
}
}
}
}
}
POST /tvs/sales/_bulk
{ "index": {}}
{ "price" : 1000, "color" : "红色", "brand" : "长虹", "sold_date" : "2016-10-28" }
{ "index": {}}
{ "price" : 2000, "color" : "红色", "brand" : "长虹", "sold_date" : "2016-11-05" }
{ "index": {}}
{ "price" : 3000, "color" : "绿色", "brand" : "小米", "sold_date" : "2016-05-18" }
{ "index": {}}
{ "price" : 1500, "color" : "蓝色", "brand" : "TCL", "sold_date" : "2016-07-02" }
{ "index": {}}
{ "price" : 1200, "color" : "绿色", "brand" : "TCL", "sold_date" : "2016-08-19" }
{ "index": {}}
{ "price" : 2000, "color" : "红色", "brand" : "长虹", "sold_date" : "2016-11-05" }
{ "index": {}}
{ "price" : 8000, "color" : "红色", "brand" : "三星", "sold_date" : "2017-01-01" }
{ "index": {}}
{ "price" : 2500, "color" : "蓝色", "brand" : "小米", "sold_date" : "2017-02-12" }
GET /tvs/sales/_search
{
"size" : 0,
"aggs" : {
"popular_colors" : {
"terms" : {
"field" : "color"
}
}
}
}
size:只获取聚合结果,而不要执行聚合的原始数据
aggs:固定语法,要对一份数据执行分组聚合操作
popular_colors:就是对每个aggs,都要起一个名字,这个名字是随机的,你随便取什么都ok
terms:根据字段的值进行分组
field:根据指定的字段的值进行分组
查询出来的结果:
{
"took": 61,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 8,
"max_score": 0,
"hits": []
},
"aggregations": {
"popular_color": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "红色",
"doc_count": 4
},
{
"key": "绿色",
"doc_count": 2
},
{
"key": "蓝色",
"doc_count": 2
}
]
}
}
}
hits.hits:我们指定了size是0,所以hits.hits就是空的,否则会把执行聚合的那些原始数据给你返回回来
aggregations:聚合结果
popular_color:我们指定的某个聚合的名称
buckets:根据我们指定的field划分出的buckets
key:每个bucket对应的那个值
doc_count:这个bucket分组内,有多少个数据
数量,其实就是这种颜色的销量
每种颜色对应的bucket中的数据的
默认的排序规则:按照doc_count降序排序
GET /tvs/sales/_search
{
"size": 0,
"aggs": {
"colors": {
"terms": {
"field": "color"
},
"aggs": {
"avg_price": {
"avg": {
"field": "price"
}
}
}
}
}
}
在一个aggs执行的bucket操作(terms),平级的json结构下,再加一个aggs,这个第二个aggs内部,同样取个名字,执行一个metric操作,avg,对之前的每个bucket中的数据的指定的field:price field,求一个平均值
就是一个metric,就是一个对一个bucket分组操作之后,对每个bucket都要执行的一个metric
从颜色到品牌进行下钻分析,每种颜色的平均价格,以及找到每种颜色每个品牌的平均价格(就是分组的情况下在进行分组)
GET /tvs/sales/_search
{
"size": 0,
"aggs": {
"colors": {
"terms": {
"field": "color"
},
"aggs": {
"color_avg_price": {
"avg": {
"field": "price"
}
},
"group_by_brank":{
"terms": {
"field": "brand"
},
"aggs": {
"brand_avg_price": {
"avg": {
"field": "price"
}
}
}
}
}
}
}
}
count:bucket,terms,自动就会有一个doc_count,就相当于是count
avg:avg aggs,求平均值
max:求一个bucket内,指定field值最大的那个数据
min:求一个bucket内,指定field值最小的那个数据
sum:求一个bucket内,指定field值的总和
GET /tvs/sales/_search
{
"size" : 0,
"aggs": {
"colors": {
"terms": {
"field": "color"
},
"aggs": {
"avg_price": { "avg": { "field": "price" } },
"min_price" : { "min": { "field": "price"} },
"max_price" : { "max": { "field": "price"} },
"sum_price" : { "sum": { "field": "price" } }
}
}
}
}
histogram:类似于terms,也是进行bucket分组操作;
区别在于:
它可以接收一个field,按照这个field的值的各个范围区间进行bucket分组操作
bucket划分的方法,terms,将field值相同的数据划分到一个bucket中
GET /tvs/sales/_search
{
"size" : 0,
"aggs":{
"price":{
"histogram":{
"field": "price",
"interval": 2000
},
"aggs":{
"revenue": {
"sum": {
"field" : "price"
}
}
}
}
}
}
interval:2000,划分范围:0~2000,2000~4000,4000~6000,6000~8000,8000~10000,buckets
date histogram:
按照我们指定的某个date类型的日期field,以及日期interval,按照一定的日期间隔,去划分bucket
min_doc_count:
即使某个日期interval,2017-01-01~2017-01-31中,一条数据都没有,那么这个区间也是要返回的,不然默认是会过滤掉这个区间的
extended_bounds,min,max:
划分bucket的时候,会限定在这个起始日期,和截止日期内
GET /tvs/sales/_search
{
"size" : 0,
"aggs": {
"sales": {
"date_histogram": {
"field": "sold_date",
"interval": "month",
"format": "yyyy-MM-dd",
"min_doc_count" : 0,
"extended_bounds" : {
"min" : "2016-01-01",
"max" : "2017-12-31"
}
}
}
}
}
GET /tvs/sales/_search
{
"size": 0,
"aggs": {
"group_by_sold_date": {
"date_histogram": {
"field": "sold_date",
"interval": "quarter",
"format": "yyyy-MM-dd",
"min_doc_count": 0,
"extended_bounds": {
"min": "2016-01-01",
"max": "2017-12-31"
}
},
"aggs": {
"group_by_brand": {
"terms": {
"field": "brand"
},
"aggs": {
"sum_price": {
"sum": {
"field": "price"
}
}
}
},
"total_sum_price": {
"sum": {
"field": "price"
}
}
}
}
}
}
GET /tvs/sales/_search
{
"size": 0,
"query": {
"term": {
"brand": {
"value": "小米"
}
}
},
"aggs": {
"group_by_color": {
"terms": {
"field": "color"
}
}
}
}
aggregation,scope的聚合操作,必须在query的搜索结果范围内执行;有些需求需要对所有的数据执行聚合的。
global:就是global bucket,就是将所有数据纳入聚合的scope,而不管之前的query
GET /tvs/sales/_search
{
"size": 0,
"query": {
"term": {
"brand": {
"value": "长虹"
}
}
},
"aggs": {
"single_brand_avg_price": {
"avg": {
"field": "price"
}
},
"all": {
"global": {},
"aggs": {
"all_brand_avg_price": {
"avg": {
"field": "price"
}
}
}
}
}
}
GET /tvs/sales/_search
{
"size": 0,
"query": {
"constant_score": {
"filter": {
"range": {
"price": {
"gte": 1200
}
}
}
}
},
"aggs": {
"avg_price": {
"avg": {
"field": "price"
}
}
}
}
GET /tvs/sales/_search
{
"size": 0,
"query": {
"term": {
"brand": {
"value": "长虹"
}
}
},
"aggs": {
"recent_30d": {
"filter": {
"range": {
"sold_date": {
"gte": "now-30d"
}
}
},
"aggs": {
"recent_150d_avg_price": {
"avg": {
"field": "price"
}
}
}
}
}
}
GET /tvs/sales/_search
{
"size": 0,
"aggs": {
"group_by_color": {
"terms": {
"field": "color",
"order": {
"avg_price": "asc"
}
},
"aggs": {
"avg_price": {
"avg": {
"field": "price"
}
}
}
}
}
}
GET /tvs/sales/_search
{
"size": 0,
"aggs": {
"group_by_color": {
"terms": {
"field": "color"
},
"aggs": {
"group_by_brand": {
"terms": {
"field": "brand",
"order": {
"avg_price": "desc"
}
},
"aggs": {
"avg_price": {
"avg": {
"field": "price"
}
}
}
}
}
}
}
}
易并行聚合算法:
有些聚合算法很容易就可以并行的,比如max:每个shard上可能有一万条数据,然后从这一万条数据提取出max值,将这些shard上取出的值放到coordinate node上再进行筛选最大的max值。
近似聚合算法:
有些算法比如说count(distinc)去重数量,数据就会很多,这时候es会采取近似聚合的方法就是采取每个node上进行近似估计的方式得到最终的结论,会提高性能但是有5%左右的误差。
三角选择原则:
精准+实时+大数据 –> 选择2个
(1)精准+实时: 没有大数据,数据量很小,那么一般就是单机跑,随便你怎么玩儿都可以
(2)精准+大数据:hadoop,批处理,非实时,可以处理海量数据,保证精准,可能会跑几个小时
(3)大数据+实时:es,不精准,近似估计,可能会有百分之几的错误率
es去重:cardinality metric,对每个bucket中的指定的field进行去重,取去重后的count,类似于count(distinct)
GET /tvs/sales/_search
{
"size" : 0,
"aggs" : {
"months" : {
"date_histogram": {
"field": "sold_date",
"interval": "month"
},
"aggs": {
"distinct_colors" : {
"cardinality" : {
"field" : "brand"
}
}
}
}
}
}
上边提到cardinality相当于count(distinct),有5%的错误率,性能在100ms左右
precision_threshold优化准确率和内存开销
GET /tvs/sales/_search
{
"size" : 0,
"aggs" : {
"distinct_brand" : {
"cardinality" : {
"field" : "brand",
"precision_threshold" : 100
}
}
}
}
brand去重,如果brand的unique value,在100个以内,cardinality,几乎保证100%准确
cardinality算法,会占用precision_threshold * 8 byte 内存消耗,100 * 8 = 800个字节
需求:比如有一个网站,记录下了每次请求的访问的耗时,需要统计tp50,tp90,tp99
tp50:50%的请求的耗时最长在多长时间
tp90:90%的请求的耗时最长在多长时间
tp99:99%的请求的耗时最长在多长时间
PUT /website
{
"mappings": {
"logs": {
"properties": {
"latency": {
"type": "long"
},
"province": {
"type": "keyword"
},
"timestamp": {
"type": "date"
}
}
}
}
}
POST /website/logs/_bulk
{ "index": {}}
{ "latency" : 105, "province" : "江苏", "timestamp" : "2016-10-28" }
{ "index": {}}
{ "latency" : 83, "province" : "江苏", "timestamp" : "2016-10-29" }
{ "index": {}}
{ "latency" : 92, "province" : "江苏", "timestamp" : "2016-10-29" }
{ "index": {}}
{ "latency" : 112, "province" : "江苏", "timestamp" : "2016-10-28" }
{ "index": {}}
{ "latency" : 68, "province" : "江苏", "timestamp" : "2016-10-28" }
{ "index": {}}
{ "latency" : 76, "province" : "江苏", "timestamp" : "2016-10-29" }
{ "index": {}}
{ "latency" : 101, "province" : "新疆", "timestamp" : "2016-10-28" }
{ "index": {}}
{ "latency" : 275, "province" : "新疆", "timestamp" : "2016-10-29" }
{ "index": {}}
{ "latency" : 166, "province" : "新疆", "timestamp" : "2016-10-29" }
{ "index": {}}
{ "latency" : 654, "province" : "新疆", "timestamp" : "2016-10-28" }
{ "index": {}}
{ "latency" : 389, "province" : "新疆", "timestamp" : "2016-10-28" }
{ "index": {}}
{ "latency" : 302, "province" : "新疆", "timestamp" : "2016-10-29" }
接下来进行查询:
GET /website/logs/_search
{
"size": 0,
"aggs": {
"latency_percentiles": {
"percentiles": {
"field": "latency",
"percents": [
50,
95,
99
]
}
},
"latency_avg": {
"avg": {
"field": "latency"
}
}
}
}