【图像识别】基于RGB和BP神经网络的人民币识别系统含GUI界面

  • 课题介绍

    本设计为基于MATLAB的人民币识别系统。带有一个GUI界面。先利用radon进行倾斜校正,根据不同纸币,选择不同维度的参数识别纸币金额,有通过RGB分量识别100元;

通过面额图像的宽度识别1元、5元;通过构建矩形结构体识别10元 ;通过RGB分量识别 20元 与 50元。

 【图像识别】基于RGB和BP神经网络的人民币识别系统含GUI界面_第1张图片

function varargout = main(varargin)
% MAIN MATLAB code for main.fig
%      MAIN, by itself, creates a new MAIN or raises the existing
%      singleton*.
%
%      H = MAIN returns the handle to a new MAIN or the handle to
%      the existing singleton*.
%
%      MAIN('CALLBACK',hObject,eventData,handles,...) calls the local
%      function named CALLBACK in MAIN.M with the given input arguments.
%
%      MAIN('Property','Value',...) creates a new MAIN or raises the
%      existing singleton*.  Starting from the left, property value pairs are
%      applied to the GUI before main_OpeningFcn gets called.  An
%      unrecognized property name or invalid value makes property application
%      stop.  All inputs are passed to main_OpeningFcn via varargin.
%
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one
%      instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help main

% Last Modified by GUIDE v2.5 29-May-2020 00:04:07

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name',       mfilename, ...
    'gui_Singleton',  gui_Singleton, ...
    'gui_OpeningFcn', @main_OpeningFcn, ...
    'gui_OutputFcn',  @main_OutputFcn, ...
    'gui_LayoutFcn',  [] , ...
    'gui_Callback',   []);
if nargin && ischar(varargin{1})
    gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
    gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT


% --- Executes just before main is made visible.
function main_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
% varargin   command line arguments to main (see VARARGIN)

% Choose default command line output for main
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes main wait for user response (see UIRESUME)
% uiwait(handles.figure1);


% --- Outputs from this function are returned to the command line.
function varargout = main_OutputFcn(hObject, eventdata, handles)
% varargout  cell array for returning output args (see VARARGOUT);
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;


% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton1 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
%% 图像读取
[filename, pathname] = uigetfile({'*.jpg;*.tif;*.png;*.gif','All Image Files';...
    '*.*','All Files' });
l = imread([ pathname,filename]);
axes(handles.axes1)
imshow(l);
title('原始图像')
l1=rgb2gray(l);                %将真彩色图像转换为灰度图像
bw1=edge(l1,'sobel', 'both');  %采用sobel算子进行边缘检测
handles.bw1=bw1;
theta=0:179;                   %定义theta角度范围
r=radon(bw1,theta);            %对图像进行Radon变换

%%%%%检测Radon变换矩阵中的峰值所对应的列坐标%%%%
[m,n]=size(r);
c=1;
for i=1:m
    for j=1:n
        if  r(1,1)=50)&&(PY1>1))
    PY1=PY1-1;
end
PY2=MaxY;
while ((Y1(PY2,1)>=50)&&(PY2PX1))
    PX2=PX2-1;
end
dw=pic(PY1:PY2,PX1:PX2,:);
dw_gray=rgb2gray(dw);
dw_gray=imadjust(dw_gray,[0,1],[1,0]);
dw_bw=im2bw(dw_gray);
handles.dw_bw=dw_bw;
%%
%%分割提取RMB数值图像%%

[m,n]=size(dw_bw);
m1=round(m/3);
m2=round(2*m/3);
n1=round(n/6);
n2=round(n/3);
n3=round(2*n/3);
n4=round(5*n/6);
sum1=sum(sum(dw_bw(m1:m2,n1:n2)));
sum2=sum(sum(dw_bw(m1:m2,n3:n4)));
if sum1>sum2
    dw=imrotate(dw,180,'crop');
end

%%
%%图像处理%%
x=dw;
x1=imresize(x,[236,500]);%'缩放图像
z=imcrop(x1,[270,150,160,65]);%对图像进行剪切,选取有效区域
%%
I=imcrop(x1,[130,60,130,65]);    %对图像进行剪切,选取有效区域
handles.I=I;
I1=rgb2gray(I);    %转换为灰度图像
I2=medfilt2(I1);    %滤波默认窗口
I3=imadjust(I2,[0.3,0.5],[0,1],1);   %明暗反转
I4=im2bw(I3);
handles.I4=I4;
se=strel('rectangle',[3,3]);   %构造结构函数,以长方形构造一个se

【图像识别】基于RGB和BP神经网络的人民币识别系统含GUI界面_第2张图片

 

完整代码或者代写添加QQ1575304183

往期回顾>>>>>>

【图像识别】基于cnn卷积神经网络之验证码识别matlab源码

【图像识别】基于svm植物叶子疾病检测和分类

【图像识别】路面裂缝识别含GUI源码

【图像识别】基于RGB和BP神经网络的人民币识别系统含GUI界面

【图像识别】条形码识别系统

【图像识别】基于不变矩的数字验证码识别含GUI界面

【图像识别】基于模板匹配之手写数字识别系统GUI界面

【图像识别】基于贝叶斯分类器之目标识别matlab源码

你可能感兴趣的:(matlab,图像处理,BP神经网络,人民币识别)