下面给出课程链接,欢迎各位小伙来来报考!本帖将持续更新。我只是飞桨的搬运工
话不多说,这么良心的课程赶快扫码上车!https://aistudio.baidu.com/aistudio/education/group/info/1297?activityId=5&directly=1&shared=1
# 加载飞桨和相关数据处理的库
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph.nn import Linear
import numpy as np
import os
import gzip
import json
import random
在实际应用中,保存到本地的数据存储格式多种多样,如MNIST数据集以json格式存储在本地,其数据存储结构如 图2 所示。
data包含三个元素的列表:train_set、val_set、 test_set。
train_set包含两个元素的列表:train_images、train_labels。
在本地./work/
目录下读取文件名称为mnist.json.gz
的MNIST数据,并拆分成训练集、验证集和测试集,实现方法如下所示。
# 声明数据集文件位置
datafile = './work/mnist.json.gz'
print('loading mnist dataset from {} ......'.format(datafile))
# 加载json数据文件
data = json.load(gzip.open(datafile))
print('mnist dataset load done')
# 读取到的数据区分训练集,验证集,测试集
train_set, val_set, eval_set = data
# 数据集相关参数,图片高度IMG_ROWS, 图片宽度IMG_COLS
IMG_ROWS = 28
IMG_COLS = 28
# 打印数据信息
imgs, labels = train_set[0], train_set[1]
print("训练数据集数量: ", len(imgs))
# 观察验证集数量
imgs, labels = val_set[0], val_set[1]
print("验证数据集数量: ", len(imgs))
# 观察测试集数量
imgs, labels = val= eval_set[0], eval_set[1]
print("测试数据集数量: ", len(imgs))
通常某组织发布一个新任务的训练集和测试集数据后,全世界的科学家都针对该数据集进行创新研究,随后大量针对该数据集的论文会陆续发表。论文1的A模型声称在测试集的准确率70%,论文2的B模型声称在测试集的准确率提高到72%,论文N的X模型声称在测试集的准确率提高到90% …
然而这些论文中的模型在测试集上准确率提升真实有效么?我们不妨大胆猜测一下。
假设所有论文共产生1000个模型,这些模型使用的是测试数据集来评判模型效果,并最终选出效果最优的模型。这相当于把原始的测试集当作了验证集,使得测试集失去了真实评判模型效果的能力,正如机器学习领域非常流行的一句话:“拷问数据足够久,它终究会招供”。
那么当我们需要将学术界研发的模型复用于工业项目时,应该如何选择呢?给读者一个小建议:当几个模型的准确率在测试集上差距不大时,尽量选择网络结构相对简单的模型。往往越精巧设计的模型和方法,越不容易在不同的数据集之间迁移。
说明:
通过大量实验发现,模型对最后出现的数据印象更加深刻。训练数据导入后,越接近模型训练结束,最后几个批次数据对模型参数的影响越大。为了避免模型记忆影响训练效果,需要进行样本乱序操作。
yield
模式,以减少内存占用。在执行如上两个操作之前,需要先将数据处理代码封装成load_data
函数,方便后续调用。load_data
有三种模型:train
、valid
、eval
,分为对应返回的数据是训练集、验证集、测试集。
imgs, labels = train_set[0], train_set[1]
print("训练数据集数量: ", len(imgs))
# 获得数据集长度
imgs_length = len(imgs)
# 定义数据集每个数据的序号,根据序号读取数据
index_list = list(range(imgs_length))
# 读入数据时用到的批次大小
BATCHSIZE = 100
# 随机打乱训练数据的索引序号
random.shuffle(index_list)
# 定义数据生成器,返回批次数据
def data_generator():
imgs_list = []
labels_list = []
for i in index_list:
# 将数据处理成期望的格式,比如类型为float32,shape为[1, 28, 28]
img = np.reshape(imgs[i], [1, IMG_ROWS, IMG_COLS]).astype('float32')
label = np.reshape(labels[i], [1]).astype('float32')
imgs_list.append(img)
labels_list.append(label)
if len(imgs_list) == BATCHSIZE:
# 获得一个batchsize的数据,并返回
yield np.array(imgs_list), np.array(labels_list)
# 清空数据读取列表
imgs_list = []
labels_list = []
# 如果剩余数据的数目小于BATCHSIZE,
# 则剩余数据一起构成一个大小为len(imgs_list)的mini-batch
if len(imgs_list) > 0:
yield np.array(imgs_list), np.array(labels_list)
return data_generator
# 声明数据读取函数,从训练集中读取数据
train_loader = data_generator
# 以迭代的形式读取数据
for batch_id, data in enumerate(train_loader()):
image_data, label_data = data
if batch_id == 0:
# 打印数据shape和类型
print("打印第一个batch数据的维度:")
print("图像维度: {}, 标签维度: {}".format(image_data.shape, label_data.shape))
break
在实际应用中,原始数据可能存在标注不准确、数据杂乱或格式不统一等情况。因此在完成数据处理流程后,还需要进行数据校验,一般有两种方式:
如下代码所示,如果数据集中的图片数量和标签数量不等,说明数据逻辑存在问题,可使用assert
语句校验图像数量和标签数据是否一致。
imgs_length = len(imgs)
assert len(imgs) == len(labels), \
"length of train_imgs({}) should be the same as train_labels({})".format(len(imgs), len(label))
人工校验是指打印数据输出结果,观察是否是预期的格式。实现数据处理和加载函数后,我们可以调用它读取一次数据,观察数据的shape和类型是否与函数中设置的一致。
# 声明数据读取函数,从训练集中读取数据
train_loader = data_generator
# 以迭代的形式读取数据
for batch_id, data in enumerate(train_loader()):
image_data, label_data = data
if batch_id == 0:
# 打印数据shape和类型
print("打印第一个batch数据的维度,以及数据的类型:")
print("图像维度: {}, 标签维度: {}, 图像数据类型: {}, 标签数据类型: {}".format(image_data.shape, label_data.shape, type(image_data), type(label_data)))
break
上文,我们从读取数据、划分数据集、到打乱训练数据、构建数据读取器以及数据校验,完成了一整套一般性的数据处理流程,下面将这些步骤放在一个函数中实现,方便在神经网络训练时直接调用。
def load_data(mode='train'):
datafile = './work/mnist.json.gz'
print('loading mnist dataset from {} ......'.format(datafile))
# 加载json数据文件
data = json.load(gzip.open(datafile))
print('mnist dataset load done')
# 读取到的数据区分训练集,验证集,测试集
train_set, val_set, eval_set = data
if mode=='train':
# 获得训练数据集
imgs, labels = train_set[0], train_set[1]
elif mode=='valid':
# 获得验证数据集
imgs, labels = val_set[0], val_set[1]
elif mode=='eval':
# 获得测试数据集
imgs, labels = eval_set[0], eval_set[1]
else:
raise Exception("mode can only be one of ['train', 'valid', 'eval']")
print("训练数据集数量: ", len(imgs))
# 校验数据
imgs_length = len(imgs)
assert len(imgs) == len(labels), \
"length of train_imgs({}) should be the same as train_labels({})".format(len(imgs), len(label))
# 获得数据集长度
imgs_length = len(imgs)
# 定义数据集每个数据的序号,根据序号读取数据
index_list = list(range(imgs_length))
# 读入数据时用到的批次大小
BATCHSIZE = 100
# 定义数据生成器
def data_generator():
if mode == 'train':
# 训练模式下打乱数据
random.shuffle(index_list)
imgs_list = []
labels_list = []
for i in index_list:
# 将数据处理成希望的格式,比如类型为float32,shape为[1, 28, 28]
img = np.reshape(imgs[i], [1, IMG_ROWS, IMG_COLS]).astype('float32')
label = np.reshape(labels[i], [1]).astype('float32')
imgs_list.append(img)
labels_list.append(label)
if len(imgs_list) == BATCHSIZE:
# 获得一个batchsize的数据,并返回
yield np.array(imgs_list), np.array(labels_list)
# 清空数据读取列表
imgs_list = []
labels_list = []
# 如果剩余数据的数目小于BATCHSIZE,
# 则剩余数据一起构成一个大小为len(imgs_list)的mini-batch
if len(imgs_list) > 0:
yield np.array(imgs_list), np.array(labels_list)
return data_generator
# 数据处理部分之后的代码,数据读取的部分调用load_data函数
# 定义网络结构,同上一节所使用的网络结构
class MNIST(fluid.dygraph.Layer):
def __init__(self):
super(MNIST, self).__init__()
self.fc = Linear(input_dim=784, output_dim=1, act=None)
def forward(self, inputs):
inputs = fluid.layers.reshape(inputs, (-1, 784))
outputs = self.fc(inputs)
return outputs
# 训练配置,并启动训练过程
with fluid.dygraph.guard():
model = MNIST()
model.train()
#调用加载数据的函数
train_loader = load_data('train')
optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.001, parameter_list=model.parameters())
EPOCH_NUM = 10
for epoch_id in range(EPOCH_NUM):
for batch_id, data in enumerate(train_loader()):
#准备数据,变得更加简洁
image_data, label_data = data
image = fluid.dygraph.to_variable(image_data)
label = fluid.dygraph.to_variable(label_data)
#前向计算的过程
predict = model(image)
#计算损失,取一个批次样本损失的平均值
loss = fluid.layers.square_error_cost(predict, label)
avg_loss = fluid.layers.mean(loss)
#每训练了200批次的数据,打印下当前Loss的情况
if batch_id % 200 == 0:
print("epoch: {}, batch: {}, loss is: {}".format(epoch_id, batch_id, avg_loss.numpy()))
#后向传播,更新参数的过程
avg_loss.backward()
optimizer.minimize(avg_loss)
model.clear_gradients()
#保存模型参数
fluid.save_dygraph(model.state_dict(), 'mnist')
上面提到的数据读取采用的是同步数据读取方式。对于样本量较大、数据读取较慢的场景,建议采用异步数据读取方式。异步读取数据时,数据读取和模型训练并行执行,从而加快了数据读取速度,牺牲一小部分内存换取数据读取效率的提升,二者关系如 图4 所示。
使用飞桨实现异步数据读取非常简单,如下所示。
# 定义数据读取后存放的位置,CPU或者GPU,这里使用CPU
# place = fluid.CUDAPlace(0) 时,数据才读取到GPU上
place = fluid.CPUPlace()
with fluid.dygraph.guard(place):
# 声明数据加载函数,使用训练模式
train_loader = load_data(mode='train')
# 定义DataLoader对象用于加载Python生成器产生的数据
data_loader = fluid.io.DataLoader.from_generator(capacity=5, return_list=True)
# 设置数据生成器
data_loader.set_batch_generator(train_loader, places=place)
# 迭代的读取数据并打印数据的形状
for i, data in enumerate(data_loader):
image_data, label_data = data
print(i, image_data.shape, label_data.shape)
if i>=5:
break
与同步数据读取相比,异步数据读取仅增加了三行代码,如下所示。
place = fluid.CPUPlace()
# 设置读取的数据是放在CPU还是GPU上。
data_loader = fluid.io.DataLoader.from_generator(capacity=5, return_list=True)
# 创建一个DataLoader对象用于加载Python生成器产生的数据。数据会由Python线程预先读取,并异步送入一个队列中。
data_loader.set_batch_generator(train_loader, place)
# 用创建的DataLoader对象设置一个数据生成器set_batch_generator,输入的参数是一个Python数据生成器train_loader和服务器资源类型place(标明CPU还是GPU)
fluid.io.DataLoader.from_generator参数名称和含义如下:
异步数据读取并训练的完整案例代码如下所示。
with fluid.dygraph.guard():
model = MNIST()
model.train()
#调用加载数据的函数
train_loader = load_data('train')
# 创建异步数据读取器
place = fluid.CPUPlace()
data_loader = fluid.io.DataLoader.from_generator(capacity=5, return_list=True)
data_loader.set_batch_generator(train_loader, places=place)
optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.001, parameter_list=model.parameters())
EPOCH_NUM = 3
for epoch_id in range(EPOCH_NUM):
for batch_id, data in enumerate(data_loader):
image_data, label_data = data
image = fluid.dygraph.to_variable(image_data)
label = fluid.dygraph.to_variable(label_data)
predict = model(image)
loss = fluid.layers.square_error_cost(predict, label)
avg_loss = fluid.layers.mean(loss)
if batch_id % 200 == 0:
print("epoch: {}, batch: {}, loss is: {}".format(epoch_id, batch_id, avg_loss.numpy()))
avg_loss.backward()
optimizer.minimize(avg_loss)
model.clear_gradients()
fluid.save_dygraph(model.state_dict(), 'mnist')