HAL库 MPU6050的使用


HAL库 && MPU6050


HAL库 MPU6050的使用:今天在本教程中,我们将使用STM32接口MPU6050(GY-521)加速度计陀螺仪。同时,我将在PC上利用串口显示这些值,陀螺仪将通过I2C1连接。我用的是STM32F411RE NUCLEO板。您将用到CubeMX && KEIL5

我们将用到:

  1. LED用于闪烁判断程序正常运行
  2. UART2用于发送数据至PC
  3. I2C用于读取MPU6050数据

代码结构

  1. 我们将重定义 fputc 函数,用于串口显示
  2. MPU6050初始化函数,加速度、角速度、温度初始值读取及处理函数
  3. 主程序调用以上函数并向PC发送,以及LED状态显示

一些链接

  1. 做了一个全流程视频置于B站,涉及CubeMX的配置、代码编写以及一些寄存器地址的获取,如有需要请前往观看。链接:https://www.bilibili.com/video/BV1qf4y1r73k/ 点我直达B站
  2. 整体工程已打包至BaiDu网盘,链接:链接:https://pan.baidu.com/s/1mZcVfZNuphs1Had6ijaRfw 点我直达网盘
    提取码:5zx4
    复制这段内容后打开百度网盘手机App,操作更方便哦–来自百度网盘超级会员V3的分享

主程序

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * 

© Copyright (c) 2021 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */
/* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "stdio.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ I2C_HandleTypeDef hi2c1; UART_HandleTypeDef huart2; /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_I2C1_Init(void); static void MX_USART2_UART_Init(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ #define MPU6050_ADDR 0xD0 #define SMPLRT_DIV_REG 0x19 #define GYRO_CONFIG_REG 0x1B #define ACCEL_CONFIG_REG 0x1c #define ACCEL_XOUT_H_REG 0x3B #define TEMP_OUT_H_REG 0x41 #define GYRO_XOUT_H_REG 0x43 #define PWR_MGMT_1_REG 0x6B #define WHO_AM_I_REG 0x75 int16_t Accel_X_RAW = 0; int16_t Accel_Y_RAW = 0; int16_t Accel_Z_RAW = 0; int16_t Gyro_X_RAW = 0; int16_t Gyro_Y_RAW = 0; int16_t Gyro_Z_RAW = 0; int16_t Temp_RAW = 0; float Ax,Ay,Az,Gx,Gy,Gz,Temp; void MPU6050_Init(void ) { uint8_t check,Data; // check device ID WHO_AM_I HAL_I2C_Mem_Read (&hi2c1 ,MPU6050_ADDR,WHO_AM_I_REG,1,&check ,1,1000); if(check == 104) //if the device is present { //power management register 0x6B we should write all 0's to wake the sensor up Data = 0; HAL_I2C_Mem_Write (&hi2c1 ,MPU6050_ADDR ,PWR_MGMT_1_REG ,1,&Data ,1,1000); //Set DATA RATE of 1KHz by writing SMPLRT_DIV register Data = 0x07; HAL_I2C_Mem_Write (&hi2c1 ,MPU6050_ADDR ,SMPLRT_DIV_REG ,1 ,&Data,1,1000); // Set accelerometer configuration in ACCEL_CONFIG Register // XA_ST=0,YA_ST=0,ZA_ST=0, FS_SEL=0 ->±2g Data = 0x00; HAL_I2C_Mem_Write (&hi2c1 ,MPU6050_ADDR, ACCEL_CONFIG_REG, 1, &Data, 1, 1000); // Set Gyroscopic configuration in GYRO_CONFIG Register // XG_ST=0,YG_ST=0, FS_SEL=0 ->± 250 °/s Data = 0x00; HAL_I2C_Mem_Write (&hi2c1 ,MPU6050_ADDR, GYRO_CONFIG_REG, 1, &Data, 1, 1000); } } void MPU6050_Read_Accel(void) { uint8_t Rec_Data[6]; //Read 6 BYTES of data starting from ACCEL_XOUT_H register HAL_I2C_Mem_Read (&hi2c1 ,MPU6050_ADDR ,ACCEL_XOUT_H_REG ,1,Rec_Data ,6,1000); Accel_X_RAW = (int16_t )(Rec_Data [0] <<8 | Rec_Data [1]); Accel_Y_RAW = (int16_t )(Rec_Data [2] <<8 | Rec_Data [3]); Accel_Z_RAW = (int16_t )(Rec_Data [4] <<8 | Rec_Data [5]); Ax = Accel_X_RAW/16384.0; Ay = Accel_Y_RAW/16384.0; Az = Accel_Z_RAW/16384.0; } void MPU6050_Read_Gyro(void ) { uint8_t Rec_Data[6]; // Read 6 BYTES of data staring from GYRO_XOUT_H register HAL_I2C_Mem_Read (&hi2c1, MPU6050_ADDR ,GYRO_XOUT_H_REG ,1,Rec_Data ,6 ,1000); Gyro_X_RAW = (int16_t )(Rec_Data [0] << 8 | Rec_Data [1]); Gyro_Y_RAW = (int16_t )(Rec_Data [2] << 8 | Rec_Data [3]); Gyro_Z_RAW = (int16_t )(Rec_Data [4] << 8 | Rec_Data [5]); Gx = Gyro_X_RAW/131.0; Gy = Gyro_Y_RAW/131.0; Gz = Gyro_Z_RAW/131.0; } void MPU6050_Read_Temp(void ) { uint8_t Rec_Data[2]; HAL_I2C_Mem_Read (&hi2c1 ,MPU6050_ADDR ,TEMP_OUT_H_REG ,1 ,Rec_Data ,2 ,1000); Temp_RAW = (int16_t )(Rec_Data [0]<<8)|Rec_Data [1]; Temp = 36.53 + (Temp_RAW ) / 340; } /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_I2C1_Init(); MX_USART2_UART_Init(); /* USER CODE BEGIN 2 */ /*************************************************** 注释掉的部分作用寻找设备的地址,通过串口打印 ***************************************************/ // for(uint8_t i=0;i<255;i++) // { // if(HAL_I2C_IsDeviceReady (&hi2c1 ,i ,1 ,1000)== HAL_OK ) // { // HAL_GPIO_TogglePin (LD2_GPIO_Port ,LD2_Pin ); // printf("%d\r\n",i); // break; // } // } MPU6050_Init (); printf ("****** MPU6050 Test 3s ******\r\n"); HAL_Delay (1000); printf ("****** MPU6050 Test 2s ******\r\n"); HAL_Delay (1000); printf ("****** MPU6050 Test 1s ******\r\n"); HAL_Delay (1000); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ HAL_GPIO_TogglePin (LD2_GPIO_Port ,LD2_Pin ); MPU6050_Read_Accel (); MPU6050_Read_Gyro (); MPU6050_Read_Temp (); // 发送至PC printf("Ax=%.2f,Ay=%.2f,Az=%.2f\r\n",Ax,Ay,Az); printf("Gx=%.2f,Gy=%.2f,Gz=%.2f\r\n",Gx,Gy,Gz); printf ("Temperature=%.2f,\r\n",Temp ); HAL_Delay (500); } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = { 0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = { 0}; /** Configure the main internal regulator output voltage */ __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the CPU, AHB and APB busses clocks */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_BYPASS; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 4; RCC_OscInitStruct.PLL.PLLN = 100; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 4; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB busses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_3) != HAL_OK) { Error_Handler(); } } /** * @brief I2C1 Initialization Function * @param None * @retval None */ static void MX_I2C1_Init(void) { /* USER CODE BEGIN I2C1_Init 0 */ /* USER CODE END I2C1_Init 0 */ /* USER CODE BEGIN I2C1_Init 1 */ /* USER CODE END I2C1_Init 1 */ hi2c1.Instance = I2C1; hi2c1.Init.ClockSpeed = 100000; hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2; hi2c1.Init.OwnAddress1 = 0; hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT; hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE; hi2c1.Init.OwnAddress2 = 0; hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE; hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE; if (HAL_I2C_Init(&hi2c1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN I2C1_Init 2 */ /* USER CODE END I2C1_Init 2 */ } /** * @brief USART2 Initialization Function * @param None * @retval None */ static void MX_USART2_UART_Init(void) { /* USER CODE BEGIN USART2_Init 0 */ /* USER CODE END USART2_Init 0 */ /* USER CODE BEGIN USART2_Init 1 */ /* USER CODE END USART2_Init 1 */ huart2.Instance = USART2; huart2.Init.BaudRate = 115200; huart2.Init.WordLength = UART_WORDLENGTH_8B; huart2.Init.StopBits = UART_STOPBITS_1; huart2.Init.Parity = UART_PARITY_NONE; huart2.Init.Mode = UART_MODE_TX_RX; huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart2.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART2_Init 2 */ /* USER CODE END USART2_Init 2 */ } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = { 0}; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOH_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_RESET); /*Configure GPIO pin : LD2_Pin */ GPIO_InitStruct.Pin = LD2_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(LD2_GPIO_Port, &GPIO_InitStruct); } /* USER CODE BEGIN 4 */ /********************************************************* * *重定义 fputc 函数 * *********************************************************/ int fputc(int ch,FILE *f) { HAL_UART_Transmit (&huart2 ,(uint8_t *)&ch,1,HAL_MAX_DELAY ); return ch; } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

你可能感兴趣的:(stm32,单片机,嵌入式)