cityscape其实数据集很小,只有5000张数据集,训练的2000多张,val的只有500张,测试有几张
List of cityscapes labels:
# Please adapt the train IDs as appropriate for your approach.
# Note that you might want to ignore labels with ID 255 during training.
# Further note that the current train IDs are only a suggestion. You can use whatever you like.
# Make sure to provide your results using the original IDs and not the training IDs.
# Note that many IDs are ignored in evaluation and thus you never need to predict these!
name | id | trainId | category | categoryId | hasInstances | ignoreInEval| color
--------------------------------------------------------------------------------------------------
unlabeled | 0 | 255 | void | 0 | 0 | 1 | (0, 0, 0)
ego vehicle | 1 | 255 | void | 0 | 0 | 1 | (0, 0, 0)
rectification border | 2 | 255 | void | 0 | 0 | 1 | (0, 0, 0)
out of roi | 3 | 255 | void | 0 | 0 | 1 | (0, 0, 0)
static | 4 | 255 | void | 0 | 0 | 1 | (0, 0, 0)
dynamic | 5 | 255 | void | 0 | 0 | 1 | (111, 74, 0)
ground | 6 | 255 | void | 0 | 0 | 1 | (81, 0, 81)
road | 7 | 0 | flat | 1 | 0 | 0 | (128, 64, 128)
sidewalk | 8 | 1 | flat | 1 | 0 | 0 | (244, 35, 232)
parking | 9 | 255 | flat | 1 | 0 | 1 | (250, 170, 160)
rail track | 10 | 255 | flat | 1 | 0 | 1 | (230, 150, 140)
building | 11 | 2 | construction | 2 | 0 | 0 | (70, 70, 70)
wall | 12 | 3 | construction | 2 | 0 | 0 | (102, 102, 156)
fence | 13 | 4 | construction | 2 | 0 | 0 | (190, 153, 153)
guard rail | 14 | 255 | construction | 2 | 0 | 1 | (180, 165, 180)
bridge | 15 | 255 | construction | 2 | 0 | 1 | (150, 100, 100)
tunnel | 16 | 255 | construction | 2 | 0 | 1 | (150, 120, 90)
pole | 17 | 5 | object | 3 | 0 | 0 | (153, 153, 153)
polegroup | 18 | 255 | object | 3 | 0 | 1 | (153, 153, 153)
traffic light | 19 | 6 | object | 3 | 0 | 0 | (250, 170, 30)
traffic sign | 20 | 7 | object | 3 | 0 | 0 | (220, 220, 0)
vegetation | 21 | 8 | nature | 4 | 0 | 0 | (107, 142, 35)
terrain | 22 | 9 | nature | 4 | 0 | 0 | (152, 251, 152)
sky | 23 | 10 | sky | 5 | 0 | 0 | (70, 130, 180)
person | 24 | 11 | human | 6 | 1 | 0 | (220, 20, 60)
rider | 25 | 12 | human | 6 | 1 | 0 | (255, 0, 0)
car | 26 | 13 | vehicle | 7 | 1 | 0 | (0, 0, 142)
truck | 27 | 14 | vehicle | 7 | 1 | 0 | (0, 0, 70)
bus | 28 | 15 | vehicle | 7 | 1 | 0 | (0, 60, 100)
caravan | 29 | 255 | vehicle | 7 | 1 | 1 | (0, 0, 90)
trailer | 30 | 255 | vehicle | 7 | 1 | 1 | (0, 0, 110)
train | 31 | 16 | vehicle | 7 | 1 | 0 | (0, 80, 100)
motorcycle | 32 | 17 | vehicle | 7 | 1 | 0 | (0, 0, 230)
bicycle | 33 | 18 | vehicle | 7 | 1 | 0 | (119, 11, 32)
license plate | -1 | -1 | vehicle | 7 | 0 | 1 | (0, 0, 142)
Example usages:
ID of label 'car': 26
Category of label with ID '26': vehicle
Name of label with trainID '0': road
id相当于一个人的身份证,真正训练时候的是 用的train_id:0-18共19类,category id有7大类
color和类别也是一一对应的。