python数据分析与挖掘(二十二)--- Pandas高级处理-数据离散化

4.7 高级处理-数据离散化

学习目标

  • 目标
    • 应用cut、qcut实现数据的区间分组
    • 应用get_dummies实现数据的one-hot编码
  • 应用
    • 找出股票的涨跌幅异动(异常)值
  • 内容预览
    • 4.7.1 什么是数据的离散化
    • 4.7.2 为什么要离散化
    • 4.7.3 如何实现数据的离散化
    • 4.7.4 小结

4.7.1 什么是数据的离散化

连续属性的离散化就是将连续属性的值域上,将值域划分为若干个离散的区间,最后用不同的符号或整数 值代表落在每个子区间中的属性值。

离散化有很多种方法,这使用一种最简单的方式去操作

  • 原始的身高数据:165,174,160,180,159,163,192,184
  • 假设按照身高分几个区间段:(150, 165], (165, 180], (180, 195]

这样我们将数据分到了三个区间段,我可以对应的标记为矮、中、高三个类别,最终要处理成一个“哑变量”矩阵。

python数据分析与挖掘(二十二)--- Pandas高级处理-数据离散化_第1张图片

4.7.2 为什么要离散化

连续属性离散化的目的是为了简化数据结构,数据离散化技术可以用来减少给定连续属性值的个数。离散化方法经常作为数据挖掘的工具。

4.7.3 如何实现数据的离散化

案例:股票的涨跌幅离散化

我们对股票每日的"p_change"进行离散化

1 读取股票的数据

先读取股票的数据,筛选出p_change数据

data = pd.read_csv("./stock_day/stock_day.csv")
p_change= data['p_change']

2 将股票涨跌幅数据进行分组

python数据分析与挖掘(二十二)--- Pandas高级处理-数据离散化_第2张图片

使用的工具:

  • pd.qcut(data, bins):
    • 对数据进行分组将数据分组 一般会与value_counts搭配使用,统计每组的个数
  • series.value_counts():统计分组次数
# 自行分组
qcut = pd.qcut(p_change, 10)
# 计算分到每个组数据个数
qcut.value_counts()

自定义区间分组:

  • pd.cut(data, bins)
# 自己指定分组区间
bins = [-100, -7, -5, -3, 0, 3, 5, 7, 100]
p_counts = pd.cut(p_change, bins)

3 股票涨跌幅分组数据变成one-hot编码

  • pandas.get_dummies(dataprefix=None)

    • data:array-like, Series, or DataFrame

    • prefix:分组名字

# 得出one-hot编码矩阵
dummies = pd.get_dummies(p_counts, prefix="rise")

python数据分析与挖掘(二十二)--- Pandas高级处理-数据离散化_第3张图片

你可能感兴趣的:(python,数据分析,python,数据分析)