MapReduce——统计单词出现次数WordCount

一、

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;

/*
统计单词出现次数,
没有严格的词法分析ヾ(≧O≦)〃~
不是很严谨
写的只是简单的用空格切割,如果是带有标点符号的结果有很大问题
 */
public class ForWorldCount {
    public static class ForMapper extends Mapper{
        Text oKey=new Text();
        IntWritable oValue=new IntWritable(1);
        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            String line=value.toString();//读到的文本
            String []strs=line.split(" ");
            for(String s:strs){
                oKey.set(s);
                context.write(oKey,oValue);//向reduce输出key-value
            }
        }
    }
    public static class ForReducer extends Reducer{
        IntWritable oValue=new IntWritable();
        @Override
        protected void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException {
            int sum=0;
            for(IntWritable i:values){
                sum+=i.get();
            }
            oValue.set(sum);
            context.write(key,oValue);
        }
    }
    public static void main(String[] args) throws IOException, URISyntaxException, ClassNotFoundException, InterruptedException {
        Job job= Job.getInstance();
        //设置任务的mapper类型,以及mapper的key-value类型
        job.setMapperClass(ForMapper.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);
        //设置任务的reducer类型,以及reducer的key-value类型
        job.setReducerClass(ForReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        //配置输入路径
        FileInputFormat.addInputPath(job,new Path("E://forTestData//forWordCount"));
        //配置输出路径,若文件已存在,先删除
        FileSystem fileSystem=FileSystem.get(new URI("file://E://output"),new Configuration());
        Path path=new Path("E://output");
        if(fileSystem.exists(path)){
            fileSystem.delete(path,true);
        }
        FileOutputFormat.setOutputPath(job,path);
        //提交任务
        job.waitForCompletion(true);

    }
}

二、

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;
import java.util.*;

/*
在统计单词出现次数的基础上,
找出出现次数最多的单词
如果次数相同,选长度更长的
 */
public class ForSortWordCount {
    public static  class  ForMapper extends Mapper{
        Map map=new HashMap();
        int maxTimes=0;
        @Override
        //map的输入是上一阶段输出的结果(单词+出现次数)
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            String line=value.toString();
            String strs[]=line.split("\t");
            String word=strs[0];
            int times=Integer.parseInt(strs[1]);
            if(times>maxTimes){
                map.clear();
                map.put(word,times);
                maxTimes=times;
            }
        }
        /*当仅需要将map的计算结果只输出一次的时候比如topOne、topN问题
          可以使用cleanup方法
          cleanup方法会在map执行结束后执行一次,一般做输出操作
          同理,setup方法是在map执行开始之前执行一次
         */
        @Override
        protected void cleanup(Context context) throws IOException, InterruptedException {
            Map.Entry entry=map.entrySet().iterator().next();
            context.write(new Text(entry.getKey()),new IntWritable(entry.getValue()));
        }
    }
    public static class ForReducer extends Reducer{
        Map map=new HashMap();
        @Override
        protected void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException {
            map.put(key.toString(),values.iterator().next().get());
        }

        @Override
        protected void cleanup(Context context) throws IOException, InterruptedException {
            List> list=new ArrayList>(map.entrySet());
            Collections.sort(list,new Comparator>() {
                public int compare(Map.Entry o1, Map.Entry o2) {
                   if(o1.getValue()==o2.getValue()){
                       return o2.getKey().length()-o1.getKey().length();
                   }else{
                       return o2.getValue()-o1.getValue();
                   }
                }});
            Map.Entry entry=list.get(0);
            context.write(new Text(entry.getKey()),new IntWritable(entry.getValue()));
        }
    }
    public static void main(String[] args) throws IOException, URISyntaxException, ClassNotFoundException, InterruptedException {
        Job job= Job.getInstance();
        job.setMapperClass(ForMapper.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);
        job.setReducerClass(ForReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        FileSystem fileSystem=FileSystem.get(new URI("file:E://output"),new Configuration());
        Path path=new Path("E://output");
        if(fileSystem.exists(path)){
            fileSystem.delete(path,true);
        }
        FileInputFormat.addInputPath(job,new Path("E://forTestData//forWordCount//forSortWordCount"));
        FileOutputFormat.setOutputPath(job,path);
        job.setNumReduceTasks(1);//若要求出全局TopN,map处理完的数据只能交付给一个reduce
        job.waitForCompletion(true);
    }
}

你可能感兴趣的:(hadoop,MapReduce)