Python绘制折线图之可视化神器pyecharts(一)

目录

折线图介绍

折线图模板系列

双折线图(气温最高最低温度趋势显示)

面积折线图(紧贴Y轴)

简单折线图(无动态和数据标签)

连接空白数据折线图

对数轴折线图示例

折线图堆叠(适合多个折线图展示)

二维曲线折线图(两个数据)

多维度折线图(颜色对比)

阶梯折线图

js高渲染折线图

每文一语


折线图介绍

折线图和柱状图一样是我们日常可视化最多的一个图例,当然它的优势和适用场景相信大家肯定不陌生,要想快速的得出趋势,抓住趋势二字,就会很快的想到要用折线图来表示了。折线图是通过直线将这些点按照某种顺序连接起来形成的图,适用于数据在一个有序的因变量上的变化,它的特点是反应事物随类别而变化的趋势,可以清晰展现数据的增减趋势、增减的速率、增减的规律、峰值等特征。

优点

  • 能很好的展现沿某个维度的变化趋势
  • 能比较多组数据在同一个维度上的趋势
  • 适合展现较大数据集

缺点:每张图上不适合展示太多折线

折线图模板系列

双折线图(气温最高最低温度趋势显示)

双折线图在一张图里面显示,肯定有一个相同的维度,然后有两个不同的数据集。比如一天的温度有最高的和最低的温度,我们就可以用这个来作为展示了。

import pyecharts.options as opts
from pyecharts.charts import Line
week_name_list = ["周一", "周二", "周三", "周四", "周五", "周六", "周日"]
high_temperature = [11, 11, 15, 13, 12, 13, 10]
low_temperature = [1, -2, 2, 5, 3, 2, 0]
(
    Line(init_opts=opts.InitOpts(width="1000px", height="600px"))
    .add_xaxis(xaxis_data=week_name_list)
    .add_yaxis(
        series_name="最高气温",
        y_axis=high_temperature,
        # 显示最大值和最小值
        # markpoint_opts=opts.MarkPointOpts(
        #     data=[
        #         opts.MarkPointItem(type_="max", name="最大值"),
        #         opts.MarkPointItem(type_="min", name="最小值"),
        #     ]
        # ),
        # 显示平均值
        # markline_opts=opts.MarkLineOpts(
        #     data=[opts.MarkLineItem(type_="average", name="平均值")]
        # ),
    )
    .add_yaxis(
        series_name="最低气温",
        y_axis=low_temperature,
        # 设置刻度标签
        # markpoint_opts=opts.MarkPointOpts(
        #     data=[opts.MarkPointItem(value=-2, name="周最低", x=1, y=-1.5)]
        # ),
        # markline_opts=opts.MarkLineOpts(
        #     data=[
        #         opts.MarkLineItem(type_="average", name="平均值"),
        #         opts.MarkLineItem(symbol="none", x="90%", y="max"),
        #         opts.MarkLineItem(symbol="circle", type_="max", name="最高点"),
        #     ]
        # ),
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="未来一周气温变化", subtitle="副标题"),
        # tooltip_opts=opts.TooltipOpts(trigger="axis"),
        # toolbox_opts=opts.ToolboxOpts(is_show=True),
        xaxis_opts=opts.AxisOpts(type_="category", boundary_gap=False),
    )
    .render("最低最高温度折线图.html")
)
print("图表已生成!请查收!")

 

Python绘制折线图之可视化神器pyecharts(一)_第1张图片

 

面积折线图(紧贴Y轴)

还记得二重积分吗,面积代表什么?有时候我们就想要看谁围出来的面积大,这个在物理的实际运用中比较常见,下面来看看效果吧。

import pyecharts.options as opts
from pyecharts.charts import Line
from pyecharts.faker import Faker
from pyecharts.globals import ThemeType

c = (
    Line({"theme": ThemeType.MACARONS})
        .add_xaxis(Faker.choose())
        .add_yaxis("商家A", Faker.values(), is_smooth=True)
        .add_yaxis("商家B", Faker.values(), is_smooth=True)
        .set_series_opts(
        areastyle_opts=opts.AreaStyleOpts(opacity=0.5),
        label_opts=opts.LabelOpts(is_show=False),
    )
        .set_global_opts(
        title_opts=opts.TitleOpts(title="标题"),
        xaxis_opts=opts.AxisOpts(
            axistick_opts=opts.AxisTickOpts(is_align_with_label=True),
            is_scale=False,
            boundary_gap=False,
            name='类别',
            name_location='middle',
            name_gap=30,  # 标签与轴线之间的距离,默认为20,最好不要设置20
            name_textstyle_opts=opts.TextStyleOpts(
                font_family='Times New Roman',
                font_size=16  # 标签字体大小
            )),

        yaxis_opts=opts.AxisOpts(
            name='数量',
            name_location='middle',
            name_gap=30,
            name_textstyle_opts=opts.TextStyleOpts(
                font_family='Times New Roman',
                font_size=16
                # font_weight='bolder',
            )),
        # toolbox_opts=opts.ToolboxOpts()  # 工具选项
    )
        .render("面积折线图-紧贴Y轴.html")
)
print("请查收!")

 

Python绘制折线图之可视化神器pyecharts(一)_第2张图片

简单折线图(无动态和数据标签)

此模板和Excel里面的可视化差不多,没有一点功能元素,虽然它是最简洁的,但是我们可以通过这个进行改动,在上面创作的画作。

import pyecharts.options as opts
from pyecharts.charts import Line
from pyecharts.globals import ThemeType

x_data = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]
y_data = [820, 932, 901, 934, 1290, 1330, 1320]

(
    Line({"theme": ThemeType.MACARONS})
        .set_global_opts(
        tooltip_opts=opts.TooltipOpts(is_show=False),
        xaxis_opts=opts.AxisOpts(
            name='类别',
            name_location='middle',
            name_gap=30,  # 标签与轴线之间的距离,默认为20,最好不要设置20
            name_textstyle_opts=opts.TextStyleOpts(
                font_family='Times New Roman',
                font_size=16  # 标签字体大小
            )),
        yaxis_opts=opts.AxisOpts(
            type_="value",
            axistick_opts=opts.AxisTickOpts(is_show=True),
            splitline_opts=opts.SplitLineOpts(is_show=True),
            name='数量',
            name_location='middle',
            name_gap=30,
            name_textstyle_opts=opts.TextStyleOpts(
                font_family='Times New Roman',
                font_size=16
                # font_weight='bolder',
            )),


)
.add_xaxis(xaxis_data=x_data)
.add_yaxis(
    series_name="",
    y_axis=y_data,
    symbol="emptyCircle",
    is_symbol_show=True,
    label_opts=opts.LabelOpts(is_show=False),
)
.render("简单折线图.html")
)

 

Python绘制折线图之可视化神器pyecharts(一)_第3张图片

 

连接空白数据折线图

有时候我们在处理数据的时候,发现有些类别的数据缺失了,这个时候我们想要它可以自动连接起来,那么这个模板就可以用到了。

import pyecharts.options as opts
from pyecharts.charts import Line
from pyecharts.faker import Faker
from pyecharts.globals import ThemeType

y = Faker.values()
y[3], y[5] = None, None
c = (
    Line({"theme": ThemeType.WONDERLAND})
        .add_xaxis(Faker.choose())
        .add_yaxis("商家A", y, is_connect_nones=True)
        .set_global_opts(title_opts=opts.TitleOpts(title="标题"),
                         xaxis_opts=opts.AxisOpts(
                             name='类别',
                             name_location='middle',
                             name_gap=30,  # 标签与轴线之间的距离,默认为20,最好不要设置20
                             name_textstyle_opts=opts.TextStyleOpts(
                                 font_family='Times New Roman',
                                 font_size=16  # 标签字体大小
                             )),
                         yaxis_opts=opts.AxisOpts(
                             name='数量',
                             name_location='middle',
                             name_gap=30,
                             name_textstyle_opts=opts.TextStyleOpts(
                                 font_family='Times New Roman',
                                 font_size=16
                                 # font_weight='bolder',
                             )), )
        # toolbox_opts=opts.ToolboxOpts()  # 工具选项)
        .render("数据缺失折线图.html")
)

 

Python绘制折线图之可视化神器pyecharts(一)_第4张图片

对数轴折线图示例

此图例未必用的上,当然也可以作为一个模板分享于此。

 

import pyecharts.options as opts
from pyecharts.charts import Line

x_data = ["一", "二", "三", "四", "五", "六", "七", "八", "九"]
y_data_3 = [1, 3, 9, 27, 81, 247, 741, 2223, 6669]
y_data_2 = [1, 2, 4, 8, 16, 32, 64, 128, 256]
y_data_05 = [1 / 2, 1 / 4, 1 / 8, 1 / 16, 1 / 32, 1 / 64, 1 / 128, 1 / 256, 1 / 512]


(
    Line(init_opts=opts.InitOpts(width="1200px", height="600px"))
    .add_xaxis(xaxis_data=x_data)
    .add_yaxis(
        series_name="1/2的指数",
        y_axis=y_data_05,
        linestyle_opts=opts.LineStyleOpts(width=2),
    )
    .add_yaxis(
        series_name="2的指数", y_axis=y_data_2, linestyle_opts=opts.LineStyleOpts(width=2)
    )
    .add_yaxis(
        series_name="3的指数", y_axis=y_data_3, linestyle_opts=opts.LineStyleOpts(width=2)
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="对数轴示例", pos_left="center"),
        tooltip_opts=opts.TooltipOpts(trigger="item", formatter="{a} 
{b} : {c}"), legend_opts=opts.LegendOpts(pos_left="left"), xaxis_opts=opts.AxisOpts(type_="category", name="x"), yaxis_opts=opts.AxisOpts( type_="log", name="y", splitline_opts=opts.SplitLineOpts(is_show=True), is_scale=True, ), ) .render("对数轴折线图.html") )

Python绘制折线图之可视化神器pyecharts(一)_第5张图片

 

折线图堆叠(适合多个折线图展示)

多个折线图展示要注意的是,数据量不能过于的接近,不然密密麻麻的折线,反而让人看起来不舒服。

import pyecharts.options as opts
from pyecharts.charts import Line
from pyecharts.globals import ThemeType

x_data = ["周一", "周二", "周三", "周四", "周五", "周六", "周日"]
y_data = [820, 932, 901, 934, 1290, 1330, 1320]

(
    Line({"theme": ThemeType.MACARONS})
        .add_xaxis(xaxis_data=x_data)
        .add_yaxis(
        series_name="邮件营销",
        stack="总量",
        y_axis=[120, 132, 101, 134, 90, 230, 210],
        label_opts=opts.LabelOpts(is_show=False),
    )
        .add_yaxis(
        series_name="联盟广告",
        stack="总量",
        y_axis=[220, 182, 191, 234, 290, 330, 310],
        label_opts=opts.LabelOpts(is_show=False),
    )
        .add_yaxis(
        series_name="视频广告",
        stack="总量",
        y_axis=[150, 232, 201, 154, 190, 330, 410],
        label_opts=opts.LabelOpts(is_show=False),
    )
        .add_yaxis(
        series_name="直接访问",
        stack="总量",
        y_axis=[320, 332, 301, 334, 390, 330, 320],
        label_opts=opts.LabelOpts(is_show=False),
    )
        .add_yaxis(
        series_name="搜索引擎",
        stack="总量",
        y_axis=[820, 932, 901, 934, 1290, 1330, 1320],
        label_opts=opts.LabelOpts(is_show=False),
    )
        .set_global_opts(
        title_opts=opts.TitleOpts(title="折线图堆叠"),
        tooltip_opts=opts.TooltipOpts(trigger="axis"),
        yaxis_opts=opts.AxisOpts(
            type_="value",
            axistick_opts=opts.AxisTickOpts(is_show=True),
            splitline_opts=opts.SplitLineOpts(is_show=True),
            name='数量',
            name_location='middle',
            name_gap=40,
            name_textstyle_opts=opts.TextStyleOpts(
                font_family='Times New Roman',
                font_size=16
                # font_weight='bolder',
            )),
        xaxis_opts=opts.AxisOpts(type_="category", boundary_gap=False,
                                 name='类别',
                                 name_location='middle',
                                 name_gap=30,  # 标签与轴线之间的距离,默认为20,最好不要设置20
                                 name_textstyle_opts=opts.TextStyleOpts(
                                     font_family='Times New Roman',
                                     font_size=16  # 标签字体大小
                                 )),
    )
        .render("折线图堆叠.html")
)

Python绘制折线图之可视化神器pyecharts(一)_第6张图片

 

二维曲线折线图(两个数据)

有时候需要在一个图里面进行对比,那么我们应该如何呈现一个丝滑般的曲线折线图呢?看看这个

import pyecharts.options as opts
from pyecharts.charts import Line
from pyecharts.faker import Faker

c = (
    Line()

        .add_xaxis(Faker.choose())
        .add_yaxis("商家A", Faker.values(), is_smooth=True)  # 如果不想变成曲线就删除即可
        .add_yaxis("商家B", Faker.values(), is_smooth=True)
        .set_global_opts(title_opts=opts.TitleOpts(title="标题"),
                         xaxis_opts=opts.AxisOpts(
                             name='类别',
                             name_location='middle',
                             name_gap=30,  # 标签与轴线之间的距离,默认为20,最好不要设置20
                             name_textstyle_opts=opts.TextStyleOpts(
                                 font_family='Times New Roman',
                                 font_size=16  # 标签字体大小
                             )),
                         yaxis_opts=opts.AxisOpts(
                             name='数量',
                             name_location='middle',
                             name_gap=30,
                             name_textstyle_opts=opts.TextStyleOpts(
                                 font_family='Times New Roman',
                                 font_size=16
                                 # font_weight='bolder',
                             )),
                         # toolbox_opts=opts.ToolboxOpts()  # 工具选项
                         )

        .render("二维折线图.html")
)

 

Python绘制折线图之可视化神器pyecharts(一)_第7张图片

 

多维度折线图(颜色对比)

次模板的最大的好处就是可以移动鼠标智能显示数据

import pyecharts.options as opts
from pyecharts.charts import Line

# 将在 v1.1.0 中更改
from pyecharts.commons.utils import JsCode

js_formatter = """function (params) {
        console.log(params);
        return '降水量  ' + params.value + (params.seriesData.length ? ':' + params.seriesData[0].data : '');
    }"""

(
    Line(init_opts=opts.InitOpts(width="1200px", height="600px"))
    .add_xaxis(
        xaxis_data=[
            "2016-1",
            "2016-2",
            "2016-3",
            "2016-4",
            "2016-5",
            "2016-6",
            "2016-7",
            "2016-8",
            "2016-9",
            "2016-10",
            "2016-11",
            "2016-12",
        ]
    )
    .extend_axis(
        xaxis_data=[
            "2015-1",
            "2015-2",
            "2015-3",
            "2015-4",
            "2015-5",
            "2015-6",
            "2015-7",
            "2015-8",
            "2015-9",
            "2015-10",
            "2015-11",
            "2015-12",
        ],
        xaxis=opts.AxisOpts(
            type_="category",
            axistick_opts=opts.AxisTickOpts(is_align_with_label=True),
            axisline_opts=opts.AxisLineOpts(
                is_on_zero=False, linestyle_opts=opts.LineStyleOpts(color="#6e9ef1")
            ),
            axispointer_opts=opts.AxisPointerOpts(
                is_show=True, label=opts.LabelOpts(formatter=JsCode(js_formatter))
            ),
        ),
    )
    .add_yaxis(
        series_name="2015 降水量",
        is_smooth=True,
        symbol="emptyCircle",
        is_symbol_show=False,
        # xaxis_index=1,
        color="#d14a61",
        y_axis=[2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3],
        label_opts=opts.LabelOpts(is_show=False),
        linestyle_opts=opts.LineStyleOpts(width=2),
    )
    .add_yaxis(
        series_name="2016 降水量",
        is_smooth=True,
        symbol="emptyCircle",
        is_symbol_show=False,
        color="#6e9ef1",
        y_axis=[3.9, 5.9, 11.1, 18.7, 48.3, 69.2, 231.6, 46.6, 55.4, 18.4, 10.3, 0.7],
        label_opts=opts.LabelOpts(is_show=False),
        linestyle_opts=opts.LineStyleOpts(width=2),
    )
    .set_global_opts(
        legend_opts=opts.LegendOpts(),
        tooltip_opts=opts.TooltipOpts(trigger="none", axis_pointer_type="cross"),
        xaxis_opts=opts.AxisOpts(
            type_="category",
            axistick_opts=opts.AxisTickOpts(is_align_with_label=True),
            axisline_opts=opts.AxisLineOpts(

                is_on_zero=False, linestyle_opts=opts.LineStyleOpts(color="#d14a61")

            ),
            axispointer_opts=opts.AxisPointerOpts(
                is_show=True, label=opts.LabelOpts(formatter=JsCode(js_formatter))
            ),
        ),
        yaxis_opts=opts.AxisOpts(
            type_="value",
            splitline_opts=opts.SplitLineOpts(
                is_show=True, linestyle_opts=opts.LineStyleOpts(opacity=1)
            ),
        ),
    )
    .render("多维颜色多维折线图.html")
)

Python绘制折线图之可视化神器pyecharts(一)_第8张图片

 

阶梯折线图

import pyecharts.options as opts
from pyecharts.charts import Line
from pyecharts.faker import Faker
from pyecharts.globals import ThemeType
c = (
    Line({"theme": ThemeType.MACARONS})
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", Faker.values(), is_step=True)
        .set_global_opts(title_opts=opts.TitleOpts(title="标题"),
                         xaxis_opts=opts.AxisOpts(
                             name='类别',
                             name_location='middle',
                             name_gap=30,  # 标签与轴线之间的距离,默认为20,最好不要设置20
                             name_textstyle_opts=opts.TextStyleOpts(
                                 font_family='Times New Roman',
                                 font_size=16  # 标签字体大小
                             )),
                         yaxis_opts=opts.AxisOpts(
                             name='数量',
                             name_location='middle',
                             name_gap=30,
                             name_textstyle_opts=opts.TextStyleOpts(
                                 font_family='Times New Roman',
                                 font_size=16
                                 # font_weight='bolder',
                             )),
                         # toolbox_opts=opts.ToolboxOpts()  # 工具选项
                         )
    .render("阶梯折线图.html")
)

 

Python绘制折线图之可视化神器pyecharts(一)_第9张图片

 

js高渲染折线图

里面的渲染效果相当好看,可以适用于炫酷的展示,数据集可以展示也可以不展示,在相应的位置更改参数即可。

import pyecharts.options as opts
from pyecharts.charts import Line
from pyecharts.commons.utils import JsCode


x_data = ["14", "15", "16", "17", "18", "19", "20", "21", "22", "23","24","25","26","27","28","29","30","31","32","33","34","35","36","37","38","39","40"]
y_data = [393, 438, 485, 631, 689, 824, 987, 1000, 1100, 1200,1500,1000,1700,1900,2000,500,1200,1300,1500,1800,1500,1900,1700,1000,1900,1800,2100,1600,2200,2300]

background_color_js = (
    "new echarts.graphic.LinearGradient(0, 0, 0, 1, "
    "[{offset: 0, color: '#c86589'}, {offset: 1, color: '#06a7ff'}], false)"
)
area_color_js = (
    "new echarts.graphic.LinearGradient(0, 0, 0, 1, "
    "[{offset: 0, color: '#eb64fb'}, {offset: 1, color: '#3fbbff0d'}], false)"
)

c = (
    Line(init_opts=opts.InitOpts(bg_color=JsCode(background_color_js)))
    .add_xaxis(xaxis_data=x_data)
    .add_yaxis(
        series_name="注册总量",
        y_axis=y_data,
        is_smooth=True,
        is_symbol_show=True,
        symbol="circle",
        symbol_size=6,
        linestyle_opts=opts.LineStyleOpts(color="#fff"),
        label_opts=opts.LabelOpts(is_show=True, position="top", color="white"),
        itemstyle_opts=opts.ItemStyleOpts(
            color="red", border_color="#fff", border_width=3
        ),
        tooltip_opts=opts.TooltipOpts(is_show=False),
        areastyle_opts=opts.AreaStyleOpts(color=JsCode(area_color_js), opacity=1),
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(
            title="OCTOBER 2015",
            pos_bottom="5%",
            pos_left="center",
            title_textstyle_opts=opts.TextStyleOpts(color="#fff", font_size=16),
        ),
        xaxis_opts=opts.AxisOpts(
            type_="category",
            boundary_gap=False,
            axislabel_opts=opts.LabelOpts(margin=30, color="#ffffff63"),
            axisline_opts=opts.AxisLineOpts(is_show=False),
            axistick_opts=opts.AxisTickOpts(
                is_show=True,
                length=25,
                linestyle_opts=opts.LineStyleOpts(color="#ffffff1f"),
            ),
            splitline_opts=opts.SplitLineOpts(
                is_show=True, linestyle_opts=opts.LineStyleOpts(color="#ffffff1f")
            ),
        ),
        yaxis_opts=opts.AxisOpts(
            type_="value",
            position="right",
            axislabel_opts=opts.LabelOpts(margin=20, color="#ffffff63"),
            axisline_opts=opts.AxisLineOpts(
                linestyle_opts=opts.LineStyleOpts(width=2, color="#fff")
            ),
            axistick_opts=opts.AxisTickOpts(
                is_show=True,
                length=15,
                linestyle_opts=opts.LineStyleOpts(color="#ffffff1f"),
            ),
            splitline_opts=opts.SplitLineOpts(
                is_show=True, linestyle_opts=opts.LineStyleOpts(color="#ffffff1f")
            ),
        ),
        legend_opts=opts.LegendOpts(is_show=False),
    )
    .render("高渲染.html")
)

Python绘制折线图之可视化神器pyecharts(一)_第10张图片

Python绘制折线图之可视化神器pyecharts(一)_第11张图片

 

所有图表均可配置,无论是字体的大小,还是颜色,还是背景都可以自己配置哟!下期文章我们继续探索折线图的魅力哟!

 

每文一语

万物皆对象,一切可配置!

你可能感兴趣的:(数据可视化之美,数据可视化,数据分析,折线图,pyecharts,美感)