莫烦 Python Pandas

我的视频学习笔记
pandas 基础

#  如果numpy是一个列表 那么pandas更像是一个字典  字典化的numpy
import pandas as pd
import numpy as np

s = pd.Series([1, 3, 6, np.nan, 44, 1])  # np.nan = NaN = null = none
# 0     1.0
# 1     3.0
# 2     6.0
# 3     NaN
# 4    44.0
# 5     1.0
# dtype: float64
dates = pd.date_range('20200314', periods=6)  # 输出从2020-03-14开始的6天
# DatetimeIndex(['2020-03-14', '2020-03-15', '2020-03-16', '2020-03-17',
#                '2020-03-18', '2020-03-19'],
#               dtype='datetime64[ns]', freq='D')
df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=['a', 'b', 'c', 'd'])
# 随机生成一个6行4列的矩阵 行以前面的日期作为索引 列以a,b,c,d作为索引
#                    a         b         c         d
# 2020-03-14 -2.253409 -0.948332  1.925934 -0.255811
# 2020-03-15  0.011358  1.133696 -0.614601  0.387414
# 2020-03-16 -0.265261 -0.891482 -0.913461 -0.471914
# 2020-03-17 -1.734964 -0.305402 -1.263270 -0.710429
# 2020-03-18  0.696185  0.345513  0.245048  0.479076
# 2020-03-19 -0.641163 -0.995509 -1.546538 -0.704261
df1 = pd.DataFrame(np.arange(12).reshape((3, 4)))
# 不定义行和列名称
#    0  1   2   3
# 0  0  1   2   3
# 1  4  5   6   7
# 2  8  9   10  11
df2 = pd.DataFrame({
     
    'A': 1.,
    'B': pd.Timestamp('20200314'),
    'C': pd.Series(1, index=list(range(4)), dtype='float32'),
    'D': np.array([3] * 4, dtype='int32'),
    'E': pd.Categorical(['test', 'train', "test", "train"]),
    'F': 'foo'
})
#      A          B    C  D      E    F
# 0  1.0 2020-03-14  1.0  3   test  foo
# 1  1.0 2020-03-14  1.0  3  train  foo
# 2  1.0 2020-03-14  1.0  3   test  foo
# 3  1.0 2020-03-14  1.0  3  train  foo
c = df2.dtypes  # 每一列的数据类型
# A           float64
# B    datetime64[ns]
# C           float32
# D             int32
# E          category
# F            object
# dtype: object
c = df2.index  # 行的标序 Int64Index([0, 1, 2, 3], dtype='int64')
c = df2.columns  # 列的标序 Index(['A', 'B', 'C', 'D', 'E', 'F'], dtype='object')
c = df2.values  # 输出所有值
# [[1.0 Timestamp('2020-03-14 00:00:00') 1.0 3 'test' 'foo']
# [1.0 Timestamp('2020-03-14 00:00:00') 1.0 3 'train' 'foo']
# [1.0 Timestamp('2020-03-14 00:00:00') 1.0 3 'test' 'foo']
# [1.0 Timestamp('2020-03-14 00:00:00') 1.0 3 'train' 'foo']]
c = df2.describe()  # 只能对数字形式的进行描述
#          A    C    D
# count  4.0  4.0  4.0
# mean   1.0  1.0  3.0
# std    0.0  0.0  0.0
# min    1.0  1.0  3.0
# 25%    1.0  1.0  3.0
# 50%    1.0  1.0  3.0
# 75%    1.0  1.0  3.0
# max    1.0  1.0  3.0
c = df2.T  # df2的转置
c = df2.sort_index(axis=1, ascending=False)  # 按照列 倒序 axis=0 则按行倒序 3 2 1 0 ascending=False为倒序 True为正序
#      F      E  D    C          B    A
# 0  foo   test  3  1.0 2020-03-14  1.0
# 1  foo  train  3  1.0 2020-03-14  1.0
# 2  foo   test  3  1.0 2020-03-14  1.0
# 3  foo  train  3  1.0 2020-03-14  1.0
c = df2.sort_values(by='E')  # 对值进行排序
#      A          B    C  D      E    F
# 0  1.0 2020-03-14  1.0  3   test  foo
# 2  1.0 2020-03-14  1.0  3   test  foo
# 1  1.0 2020-03-14  1.0  3  train  foo
# 3  1.0 2020-03-14  1.0  3  train  foo

选择数据

dates = pd.date_range('20200314', periods=6)
df = pd.DataFrame(np.arange(24).reshape((6, 4)), index=dates, columns=['A', 'B', 'C', 'D'])
c = df.A
c = df['A']  # 两者均为选中A列
# 2020-03-14     0
# 2020-03-15     4
# 2020-03-16     8
# 2020-03-17    12
# 2020-03-18    16
# 2020-03-19    20
# Freq: D, Name: A, dtype: int32
c = df[0: 3]  # 前3行
c = df['20200314': '20200316']  # 20200314至20200316行的元素
#             A  B   C   D
# 2020-03-14  0  1   2   3
# 2020-03-15  4  5   6   7
# 2020-03-16  8  9  10  11
# select by label: loc  通过标签值筛选
c = df.loc['20200314']  # '20200314'对应的序列
c = df.loc[:, ['A', 'B']]  # A B列对应的所有数据
c = df.loc['20200314', ['A', 'B']]  # A B列对应的所有'20200314'的数据
# select by position: iloc  通过序列号筛选
c = df.iloc[3]  # 第3行
c = df.iloc[3, 1]  # 第3行第1个数据
c = df.iloc[3: 5, 1: 3]  # 第3行到第4行 第1个到第2个数据
c = df.iloc[[1, 3, 5], [2, 3]]
# Boolean indexing
c = df[df.A < 8]  # 所有A的值小于8的序列
#             A  B  C  D
# 2020-03-14  0  1  2  3
# 2020-03-15  4  5  6  7

设置值

df.iloc[2, 2] = 111  # 第2行第2个数字改成111
df.loc['20200314', 'B'] = 222  # 第'20200314'行,第'B'列的值改成222
# df[df.A > 4] = 0  # 将A列大于4的行开始往下所有的值都改成0
#             A    B  C  D                     A    B    C   D                  A    B    C   D   F
# 2020-03-14  0  222  2  3         2020-03-14  0  222    2   3      2020-03-14  0  222    2   3 NaN
# 2020-03-15  4    5  6  7         2020-03-15  4    5    6   7      2020-03-15  4    5    6   7 NaN
# 2020-03-16  0    0  0  0         2020-03-16  0    9  111  11      2020-03-16  0    9  111  11 NaN
# 2020-03-17  0    0  0  0         2020-03-17  0   13   14  15      2020-03-17  0   13   14  15 NaN
# 2020-03-18  0    0  0  0         2020-03-18  0   17   18  19      2020-03-18  0   17   18  19 NaN
# 2020-03-19  0    0  0  0         2020-03-19  0   21   22  23      2020-03-19  0   21   22  23 NaN
df.A[df.A > 4] = 0  # 将A列大于4的行开始往下所有A列的值都改成0⬆
df['F'] = np.nan  # 添加F列 并将里面的所有值都赋值成non               ⬆
df['E'] = pd.Series([1, 2, 3, 4, 5, 6], index=pd.date_range('2020-03-14', periods=6))
# 将123456放入E列添加到df里 从2020-03-14的行开始 如果改成2020-03-15 则2020-03-14这行的E值为NaN 1~5顺次赋值

处理丢失数据

dates = pd.date_range('20200314', periods=6)
df = pd.DataFrame(np.arange(24).reshape((6, 4)), index=dates, columns=['A', 'B', 'C', 'D'])
df.iloc[0, 1] = np.nan
df.iloc[1, 2] = np.nan
c = df.dropna(axis=0, how='any')  # 按行 但凡有NaN的数据 整行都删除 how={'any', 'all'}
# 'all' 的意思是只有这一行的值全部为NaN时才删除这一行 axis=0 是行 axis=1 是列
c = df.fillna(value=1)  # 如果检测出NaN 则把这个数字改成1
c = df.isnull()  # 返回每一个值是否为NaN
c = any(df.isnull())  # 返回是否有NaN

pandas导入导出

data = pd.read_csv('Students.csv', header=None, encoding='utf-8')
data.to_pickle('Students.pickle')

Concat

# concatenating 合并
df1 = pd.DataFrame(np.ones((3, 4)) * 0, columns=['a', 'b', 'c', 'd'])  # 创建一个3*4的矩阵 全部都是0
df2 = pd.DataFrame(np.ones((3, 4)) * 1, columns=['a', 'b', 'c', 'd'])  # 创建一个3*4的矩阵 全部都是1
df3 = pd.DataFrame(np.ones((3, 4)) * 2, columns=['a', 'b', 'c', 'd'])  # 创建一个3*4的矩阵 全部都是2
res = pd.concat([df1, df2, df3], axis=0, ignore_index=True)  # 上下合并 并忽略原来的index

# join, ['inner', 'outer']
df1 = pd.DataFrame(np.ones((3, 4)) * 0, index=[0, 1, 2], columns=['a', 'b', 'c', 'd'])
df2 = pd.DataFrame(np.ones((3, 4)) * 1, index=[1, 2, 3], columns=['b', 'c', 'd', 'e'])
res = pd.concat([df1, df2], join='inner', ignore_index=True)  # 会裁剪出重合的部分 b c d 交集
#      b    c    d                                                                a    b    c    d    e
# 0  0.0  0.0  0.0                                                            0  0.0  0.0  0.0  0.0  NaN
# 1  0.0  0.0  0.0                                                            1  0.0  0.0  0.0  0.0  NaN
# 2  0.0  0.0  0.0                                                            2  0.0  0.0  0.0  0.0  NaN
# 3  1.0  1.0  1.0                                                            3  NaN  1.0  1.0  1.0  1.0
# 4  1.0  1.0  1.0                                                            4  NaN  1.0  1.0  1.0  1.0
# 5  1.0  1.0  1.0                                                            5  NaN  1.0  1.0  1.0  1.0
res = pd.concat([df1, df2], join='outer', ignore_index=True, sort=True)  # 会将没有数据的部分用NaN补充 ⬆  并集
# res = pd.concat([df1, df2], axis=1, join_axes=[df1.index])  # 左右合并 按照df1的索引 忽略index=3

# append
df1 = pd.DataFrame(np.ones((3, 4)) * 0, columns=['a', 'b', 'c', 'd'])
df2 = pd.DataFrame(np.ones((3, 4)) * 1, columns=['a', 'b', 'c', 'd'])
df3 = pd.DataFrame(np.ones((3, 4)) * 1, index=[2, 3, 4], columns=['b', 'c', 'd', 'e'])
res = df1.append(df2, ignore_index=True)  # 默认竖向加数据
res = df1.append([df2, df3], sort=False, ignore_index=True)

s1 = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
res = df1.append(s1, ignore_index=True)  # 添加一行
#      a    b    c    d
# 0  0.0  0.0  0.0  0.0
# 1  0.0  0.0  0.0  0.0
# 2  0.0  0.0  0.0  0.0
# 3  1.0  2.0  3.0  4.0

merge

# merging two df by key/keys.(may be used in databases)
# simple example one key
left = pd.DataFrame({
     'Key': ['K0', 'K1', 'K2', 'K3'],
                     'A': ['A0', 'A1', 'A2', 'A3'],
                     'B': ['B0', 'B1', 'B2', 'B3']})
right = pd.DataFrame({
     'Key': ['K0', 'K1', 'K2', 'K3'],
                      'C': ['C0', 'C1', 'C2', 'C3'],
                      'D': ['D0', 'D1', 'D2', 'D3']})
res = pd.merge(left, right, on='Key')  # 按照Key

# consider two keys
left = pd.DataFrame({
     'Key1': ['K0', 'K0', 'K1', 'K2'],
                     'Key2': ['K0', 'K1', 'K0', 'K1'],
                     'A': ['A0', 'A1', 'A2', 'A3'],
                     'B': ['B0', 'B1', 'B2', 'B3']})
right = pd.DataFrame({
     'Key1': ['K0', 'K1', 'K1', 'K2'],
                      'Key2': ['K0', 'K0', 'K0', 'K0'],
                      'C': ['C0', 'C1', 'C2', 'C3'],
                      'D': ['D0', 'D1', 'D2', 'D3']})
# how = ['inner', 'outer', 'left', right]
res = pd.merge(left, right, on=['Key1', 'Key2'], how='inner')  # 默认是inner
#  Key1 Key2   A   B   C   D
#   0   K0   K0  A0  B0  C0  D0
#   1   K1   K0  A2  B2  C1  D1
#   2   K1   K0  A2  B2  C2  D2
res = pd.merge(left, right, on=['Key1', 'Key2'], how='outer')  # 没有的部分用NaN填充
res = pd.merge(left, right, on=['Key1', 'Key2'], how='right')  # 按照right的key 没有的部分用NaN填充 left同理

# indicator
df1 = pd.DataFrame({
     'col1': [0, 1], 'col_left': ['a', 'b']})
df2 = pd.DataFrame({
     'col1': [1, 2, 2], 'col_right': [2, 2, 2]})
res = pd.merge(df1, df2, on='col1', how='outer', indicator=True)  # 会显示合并的情况 _merge
#    col1 col_left  col_right      _merge
# 0     0        a        NaN   left_only
# 1     1        b        2.0        both
# 2     2      NaN        2.0  right_only
# 3     2      NaN        2.0  right_only
# give the indicator a custom name
res = pd.merge(df1, df2, on='col1', how='outer', indicator='indicator_column')
#    col1 col_left  col_right indicator_column

# merged by index
left = pd.DataFrame({
     'A': ['A0', 'A1', 'A2'],
                     'B': ['B0', 'B1', 'B2']},
                    index=['K0', 'K1', 'K2'])
right = pd.DataFrame({
     'C': ['C0', 'C1', 'C2'],
                      'D': ['D0', 'D1', 'D2']},
                     index=['K0', 'K2', 'K3'])
# right index and left index
res = pd.merge(left, right, left_index=True, right_index=True, how='outer')  # 跟考虑key类似

# handle overlapping
boys = pd.DataFrame({
     'k': ['K0', 'K1', 'K2'], 'age': [1, 2, 3]})
girls = pd.DataFrame({
     'k': ['K0', 'K0', 'K3'], 'age': [4, 5, 6]})
res = pd.merge(boys, girls, on='k', suffixes=['_boy', '_girl'], how='inner')  # 根据k 相同的age名称分别定义为_boy, _girl
#     k  age_boy  age_girl
# 0  K0        1         4
# 1  K0        1         5

plot 画图

import matplotlib.pyplot as plt

# plot data
# Series
data = pd.Series(np.random.randn(1000), index=np.arange(1000))
data = data.cumsum()  # 数据累加
data.plot()
plt.show()

输出:
莫烦 Python Pandas_第1张图片

# DataFrame
data = pd.DataFrame(np.random.randn(1000, 4),   # 1000行 每行4个
                    index=np.arange(1000),
                    columns=list('ABCD'))
data = data.cumsum()
data.plot()
plt.show()

输出:
莫烦 Python Pandas_第2张图片

# plot method
# 'bar' 条形图 'hist' 'box' 'kde' 'area' 'scatter' 'pie'...
ax = data.plot.scatter(x='A', y='B', color='DarkBlue', label='Class1')
data.plot.scatter(x='A', y='C', color='DarkGreen', label='Class2', ax=ax)  # 将其放在ax中 ax=ax
plt.show()

输出:
莫烦 Python Pandas_第3张图片

你可能感兴趣的:(代码小笔记,python)