TODO —— mmdetection

文章目录

  • 导言
  • 简介
  • 学习率 lr
  • 单/多GPU训练
  • 多机训练
  • 定制数据集
  • 模型训练的主要单元
    • 数据加载
    • 模型定义
  • 迭代管道
  • 模型测试
    • 数据集测试
    • 图片测试(可视化)

导言

  • mmdetection 中文文档链接
  • 更全的英文文档(官方网站)
  • mmdetection:商汤科技和香港中文大学开源了一个基于Pytorch实现的深度学习目标检测工具箱mmdetection,支持Faster-RCNN,Mask-RCNN,Fast-RCNN等主流的目标检测框架,后续会加入Cascade-RCNN以及其他一系列目标检测框架
  • 相比于Facebook开源的Detectron框架,作者声称mmdetection有三点优势:performance稍高、训练速度稍快、所需显存稍小

简介

  • mmdetection 实现了分布式训练和非分布式训练,其分别使用的是 MMDistributedDataParallel 和 MMDataParallel .
  • 训练过程中的所有输出,包括 log 文件和 checkpoints 文件,自动保存到 config 配置文件中的 work_dir 路径中.

学习率 lr

  • config 文件中的默认学习率是对于 8 GPUs 和 2 img/gpu 而言的(batchsize = 8x2=16).
  • 基于 Linear Scaling Rule 策略,可根据具体的 GPUs 数量和每张 GPU 的图片数,得到的 batchsize 的大小,以正比例的设置学习率,如,对于 4GPUs x 2img/gpu = 8 (batchsize),设置 lr=0.01; 对于 16GPUs x 4img/gpu = 64 (batchsize),设置 lr=0.08.

单/多GPU训练

  • tools/train.py
  • dist_train.sh:
  • python3 tools/train.py configs/faster_rcnn_r50_fpn_1x.py --gpus 2 --validate

多机训练

  • 对于由 slurm 管理的集群上,mmdetection 的运行,可以采用 slurm_train.sh 脚本、

定制数据集

  • 对于自定义的数据集,最简单的方式是,将数据集装换为 mmdetection 中已有数据集的格式(如 COCO 和 PASCAL VOC).
  • coco
    • 新建 mmdet/dataset/custom_dataset.py:
    • 编辑 mmdet/datasets/init.py,添加:
    • 在 config 文件中即可使用 CustomDateset,类似于CocoDataset.
  • 如果不想将定制数据集的标注数据转换为 COCO 或 PASCAL 格式,mmdetection 也是支持的.

模型训练的主要单元

数据加载

  • mmdetection 使用 Dataset 和 DataLoader 进行 multiple workers 的数据加载.
  • 由于在目标检测任务中,数据可能不是相同的尺寸(如,image size, gt box size 等),mmdetection 采用了在 mmcv 库中的新的 DataContainer,以收集和分发(collect and distribute)不同尺寸的数据. 参考data_container.py

模型定义

  • 4个可定制化模块
    • backbone:FCN 网络模块,提取特征图,如,ResNet,MobileNet.
    • neck:backbones 和 heads 网络之间的模块,如,FPN, APFPN.
    • head:特定任务的网络模块,如,bbox 预测和 mask 预测.
    • roi extractor:用于从特征图提取 RoI 特征的模块,比如,RoI Align.
      TODO —— mmdetection_第1张图片
  • 如何构建模块?backbone/neck

迭代管道

TODO —— mmdetection_第2张图片

  • config文件:mask-rcnn
model = dict(
    type='MaskRCNN',  # The name of detector
    pretrained=
    'torchvision://resnet50',  # The ImageNet pretrained backbone to be loaded
    backbone=dict(  # The config of backbone
        type='ResNet',  # The type of the backbone, refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/backbones/resnet.py#L288 for more details.
        depth=50,  # The depth of backbone, usually it is 50 or 101 for ResNet and ResNext backbones.
        num_stages=4,  # Number of stages of the backbone.
        out_indices=(0, 1, 2, 3),  # The index of output feature maps produced in each stages
        frozen_stages=1,  # The weights in the first 1 stage are fronzen
        norm_cfg=dict(  # The config of normalization layers.
            type='BN',  # Type of norm layer, usually it is BN or GN
            requires_grad=True),  # Whether to train the gamma and beta in BN
        norm_eval=True,  # Whether to freeze the statistics in BN
        style='pytorch'),  # The style of backbone, 'pytorch' means that stride 2 layers are in 3x3 conv, 'caffe' means stride 2 layers are in 1x1 convs.
    neck=dict(
        type='FPN',  # The neck of detector is FPN. We also support 'NASFPN', 'PAFPN', etc. Refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/necks/fpn.py#L10 for more details.
        in_channels=[256, 512, 1024, 2048],  # The input channels, this is consistent with the output channels of backbone
        out_channels=256,  # The output channels of each level of the pyramid feature map
        num_outs=5),  # The number of output scales
    rpn_head=dict(
        type='RPNHead',  # The type of RPN head is 'RPNHead', we also support 'GARPNHead', etc. Refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/dense_heads/rpn_head.py#L12 for more details.
        in_channels=256,  # The input channels of each input feature map, this is consistent with the output channels of neck
        feat_channels=256,  # Feature channels of convolutional layers in the head.
        anchor_generator=dict(  # The config of anchor generator
            type='AnchorGenerator',  # Most of methods use AnchorGenerator, SSD Detectors uses `SSDAnchorGenerator`. Refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/anchor/anchor_generator.py#L10 for more details
            scales=[8],  # Basic scale of the anchor, the area of the anchor in one position of a feature map will be scale * base_sizes
            ratios=[0.5, 1.0, 2.0],  # The ratio between height and width.
            strides=[4, 8, 16, 32, 64]),  # The strides of the anchor generator. This is consistent with the FPN feature strides. The strides will be taken as base_sizes if base_sizes is not set.
        bbox_coder=dict(  # Config of box coder to encode and decode the boxes during training and testing
            type='DeltaXYWHBBoxCoder',  # Type of box coder. 'DeltaXYWHBBoxCoder' is applied for most of methods. Refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/bbox/coder/delta_xywh_bbox_coder.py#L9 for more details.
            target_means=[0.0, 0.0, 0.0, 0.0],  # The target means used to encode and decode boxes
            target_stds=[1.0, 1.0, 1.0, 1.0]),  # The standard variance used to encode and decode boxes
        loss_cls=dict(  # Config of loss function for the classification branch
            type='CrossEntropyLoss',  # Type of loss for classification branch, we also support FocalLoss etc.
            use_sigmoid=True,  # RPN usually perform two-class classification, so it usually uses sigmoid function.
            loss_weight=1.0),  # Loss weight of the classification branch.
        loss_bbox=dict(  # Config of loss function for the regression branch.
            type='L1Loss',  # Type of loss, we also support many IoU Losses and smooth L1-loss, etc. Refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/losses/smooth_l1_loss.py#L56 for implementation.
            loss_weight=1.0)),  # Loss weight of the regression branch.
    roi_head=dict(  # RoIHead encapsulates the second stage of two-stage/cascade detectors.
        type='StandardRoIHead',  # Type of the RoI head. Refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/roi_heads/standard_roi_head.py#L10 for implementation.
        bbox_roi_extractor=dict(  # RoI feature extractor for bbox regression.
            type='SingleRoIExtractor',  # Type of the RoI feature extractor, most of methods uses SingleRoIExtractor. Refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/roi_heads/roi_extractors/single_level.py#L10 for details.
            roi_layer=dict(  # Config of RoI Layer
                type='RoIAlign',  # Type of RoI Layer, DeformRoIPoolingPack and ModulatedDeformRoIPoolingPack are also supported. Refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/ops/roi_align/roi_align.py#L79 for details.
                out_size=7,  # The output size of feature maps.
                sample_num=0),  # Sampling ratio when extracting the RoI features. 0 means adaptive ratio.
            out_channels=256,  # output channels of the extracted feature.
            featmap_strides=[4, 8, 16, 32]),  # Strides of multi-scale feature maps. It should be consistent to the architecture of the backbone.
        bbox_head=dict(  # Config of box head in the RoIHead.
            type='Shared2FCBBoxHead',  # Type of the bbox head, Refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/roi_heads/bbox_heads/convfc_bbox_head.py#L177 for implementation details.
            in_channels=256,  # Input channels for bbox head. This is consistent with the out_channels in roi_extractor
            fc_out_channels=1024,  # Output feature channels of FC layers.
            roi_feat_size=7,  # Size of RoI features
            num_classes=80,  # Number of classes for classification
            bbox_coder=dict(  # Box coder used in the second stage.
                type='DeltaXYWHBBoxCoder',  # Type of box coder. 'DeltaXYWHBBoxCoder' is applied for most of methods.
                target_means=[0.0, 0.0, 0.0, 0.0],  # Means used to encode and decode box
                target_stds=[0.1, 0.1, 0.2, 0.2]),  # Standard variance for encoding and decoding. It is smaller since the boxes are more accurate. [0.1, 0.1, 0.2, 0.2] is a conventional setting.
            reg_class_agnostic=False,  # Whether the regression is class agnostic.
            loss_cls=dict(  # Config of loss function for the classification branch
                type='CrossEntropyLoss',  # Type of loss for classification branch, we also support FocalLoss etc.
                use_sigmoid=False,  # Whether to use sigmoid.
                loss_weight=1.0),  # Loss weight of the classification branch.
            loss_bbox=dict(  # Config of loss function for the regression branch.
                type='L1Loss',  # Type of loss, we also support many IoU Losses and smooth L1-loss, etc.
                loss_weight=1.0)),  # Loss weight of the regression branch.
        mask_roi_extractor=dict(  # RoI feature extractor for bbox regression.
            type='SingleRoIExtractor',  # Type of the RoI feature extractor, most of methods uses SingleRoIExtractor.
            roi_layer=dict(  # Config of RoI Layer that extracts features for instance segmentation
                type='RoIAlign',  # Type of RoI Layer, DeformRoIPoolingPack and ModulatedDeformRoIPoolingPack are also supported
                out_size=14,  # The output size of feature maps.
                sample_num=0),  # Sampling ratio when extracting the RoI features.
            out_channels=256,  # Output channels of the extracted feature.
            featmap_strides=[4, 8, 16, 32]),  # Strides of multi-scale feature maps.
        mask_head=dict(  # Mask prediction head
            type='FCNMaskHead',  # Type of mask head, refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/roi_heads/mask_heads/fcn_mask_head.py#L21 for implementation details.
            num_convs=4,  # Number of convolutional layers in mask head.
            in_channels=256,  # Input channels, should be consistent with the output channels of mask roi extractor.
            conv_out_channels=256,  # Output channels of the convolutional layer.
            num_classes=80,  # Number of class to be segmented.
            loss_mask=dict(  # Config of loss function for the mask branch.
                type='CrossEntropyLoss',  # Type of loss used for segmentation
                use_mask=True,  # Whether to only train the mask in the correct class.
                loss_weight=1.0))))  # Loss weight of mask branch.
train_cfg = dict(  # Config of training hyperparameters for rpn and rcnn
    rpn=dict(  # Training config of rpn
        assigner=dict(  # Config of assigner
            type='MaxIoUAssigner',  # Type of assigner, MaxIoUAssigner is used for many common detectors. Refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/bbox/assigners/max_iou_assigner.py#L10 for more details.
            pos_iou_thr=0.7,  # IoU >= threshold 0.7 will be taken as positive samples
            neg_iou_thr=0.3,  # IoU < threshold 0.3 will be taken as negative samples
            min_pos_iou=0.3,  # The minimal IoU threshold to take boxes as positive samples
            match_low_quality=True,  # Whether to match the boxes under low quality (see API doc for more details).
            ignore_iof_thr=-1),  # IoF threshold for ignoring bboxes
        sampler=dict(  # Config of positive/negative sampler
            type='RandomSampler',  # Type of sampler, PseudoSampler and other samplers are also supported. Refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/bbox/samplers/random_sampler.py#L8 for implementation details.
            num=256,  # Number of samples
            pos_fraction=0.5,  # The ratio of positive samples in the total samples.
            neg_pos_ub=-1,  # The upper bound of negative samples based on the number of positive samples.
            add_gt_as_proposals=False),  # Whether add GT as proposals after sampling.
        allowed_border=-1,  # The border allowed after padding for valid anchors.
        pos_weight=-1,  # The weight of positive samples during training.
        debug=False),  # Whether to set the debug mode
    rpn_proposal=dict(  # The config to generate proposals during training
        nms_across_levels=False,  # Whether to do NMS for boxes across levels
        nms_pre=2000,  # The number of boxes before NMS
        nms_post=1000,  # The number of boxes to be kept by NMS
        max_num=1000,  # The number of boxes to be used after NMS
        nms_thr=0.7,  # The threshold to be used during NMS
        min_bbox_size=0),  # The allowed minimal box size
    rcnn=dict(  # The config for the roi heads.
        assigner=dict(  # Config of assigner for second stage, this is different for that in rpn
            type='MaxIoUAssigner',  # Type of assigner, MaxIoUAssigner is used for all roi_heads for now. Refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/bbox/assigners/max_iou_assigner.py#L10 for more details.
            pos_iou_thr=0.5,  # IoU >= threshold 0.5 will be taken as positive samples
            neg_iou_thr=0.5,  # IoU >= threshold 0.5 will be taken as positive samples
            min_pos_iou=0.5,  # The minimal IoU threshold to take boxes as positive samples
            match_low_quality=False,  # Whether to match the boxes under low quality (see API doc for more details).
            ignore_iof_thr=-1),  # IoF threshold for ignoring bboxes
        sampler=dict(
            type='RandomSampler',  # Type of sampler, PseudoSampler and other samplers are also supported. Refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/bbox/samplers/random_sampler.py#L8 for implementation details.
            num=512,  # Number of samples
            pos_fraction=0.25,  # The ratio of positive samples in the total samples.
            neg_pos_ub=-1,  # The upper bound of negative samples based on the number of positive samples.
            add_gt_as_proposals=True
        ),  # Whether add GT as proposals after sampling.
        mask_size=28,  # Size of mask
        pos_weight=-1,  # The weight of positive samples during training.
        debug=False))  # Whether to set the debug mode
test_cfg = dict(  # Config for testing hyperparameters for rpn and rcnn
    rpn=dict(  # The config to generate proposals during testing
        nms_across_levels=False,  # Whether to do NMS for boxes across levels
        nms_pre=1000,  # The number of boxes before NMS
        nms_post=1000,  # The number of boxes to be kept by NMS
        max_num=1000,  # The number of boxes to be used after NMS
        nms_thr=0.7,  # The threshold to be used during NMS
        min_bbox_size=0),  # The allowed minimal box size
    rcnn=dict(  # The config for the roi heads.
        score_thr=0.05,  # Threshold to filter out boxes
        nms=dict(  # Config of nms in the second stage
            type='nms',  # Type of nms
            iou_thr=0.5),  # NMS threshold
        max_per_img=100,  # Max number of detections of each image
        mask_thr_binary=0.5))  # Threshold of mask prediction
dataset_type = 'CocoDataset'  # Dataset type, this will be used to define the dataset
data_root = 'data/coco/'  # Root path of data
img_norm_cfg = dict(  # Image normalization config to normalize the input images
    mean=[123.675, 116.28, 103.53],  # Mean values used to pre-training the pre-trained backbone models
    std=[58.395, 57.12, 57.375],  # Standard variance used to pre-training the pre-trained backbone models
    to_rgb=True
)  # The channel orders of image used to pre-training the pre-trained backbone models
train_pipeline = [  # Training pipeline
    dict(type='LoadImageFromFile'),  # First pipeline to load images from file path
    dict(
        type='LoadAnnotations',  # Second pipeline to load annotations for current image
        with_bbox=True,  # Whether to use bounding box, True for detection
        with_mask=True,  # Whether to use instance mask, True for instance segmentation
        poly2mask=False),  # Whether to convert the polygon mask to instance mask, set False for acceleration and to save memory
    dict(
        type='Resize',  # Augmentation pipeline that resize the images and their annotations
        img_scale=(1333, 800),  # The largest scale of image
        keep_ratio=True
    ),  # whether to keep the ratio between height and width.
    dict(
        type='RandomFlip',  # Augmentation pipeline that flip the images and their annotations
        flip_ratio=0.5),  # The ratio or probability to flip
    dict(
        type='Normalize',  # Augmentation pipeline that normalize the input images
        mean=[123.675, 116.28, 103.53],  # These keys are the same of img_norm_cfg since the
        std=[58.395, 57.12, 57.375],  # keys of img_norm_cfg are used here as arguments
        to_rgb=True),
    dict(
        type='Pad',  # Padding config
        size_divisor=32),  # The number the padded images should be divisible
    dict(type='DefaultFormatBundle'),  # Default format bundle to gather data in the pipeline
    dict(
        type='Collect',  # Pipeline that decides which keys in the data should be passed to the detector
        keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks'])
]
test_pipeline = [
    dict(type='LoadImageFromFile'),  # First pipeline to load images from file path
    dict(
        type='MultiScaleFlipAug',  # An encapsulation that encapsulates the testing augmentations
        img_scale=(1333, 800),  # Decides the largest scale for testing, used for the Resize pipeline
        flip=False,  # Whether to flip images during testing
        transforms=[
            dict(type='Resize',  # Use resize augmentation
                 keep_ratio=True),  # Whether to keep the ratio between height and width, the img_scale set here will be supressed by the img_scale set above.
            dict(type='RandomFlip'),  # Thought RandomFlip is added in pipeline, it is not used because flip=False
            dict(
                type='Normalize',  # Normalization config, the values are from img_norm_cfg
                mean=[123.675, 116.28, 103.53],
                std=[58.395, 57.12, 57.375],
                to_rgb=True),
            dict(
                type='Pad',  # Padding config to pad images divisable by 32.
                size_divisor=32),
            dict(
                type='ImageToTensor',  # convert image to tensor
                keys=['img']),
            dict(
                type='Collect',  # Collect pipeline that collect necessary keys for testing.
                keys=['img'])
        ])
]
data = dict(
    samples_per_gpu=2,  # Batch size of a single GPU
    workers_per_gpu=2,  # Worker to pre-fetch data for each single GPU
    train=dict(  # Train dataset config
        type='CocoDataset',  # Type of dataset, refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/datasets/coco.py#L19 for details.
        ann_file='data/coco/annotations/instances_train2017.json',  # Path of annotation file
        img_prefix='data/coco/train2017/',  # Prefix of image path
        pipeline=[  # pipeline, this is passed by the train_pipeline created before.
            dict(type='LoadImageFromFile'),
            dict(
                type='LoadAnnotations',
                with_bbox=True,
                with_mask=True,
                poly2mask=False),
            dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
            dict(type='RandomFlip', flip_ratio=0.5),
            dict(
                type='Normalize',
                mean=[123.675, 116.28, 103.53],
                std=[58.395, 57.12, 57.375],
                to_rgb=True),
            dict(type='Pad', size_divisor=32),
            dict(type='DefaultFormatBundle'),
            dict(
                type='Collect',
                keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks'])
        ]),
    val=dict(  # Validation dataset config
        type='CocoDataset',
        ann_file='data/coco/annotations/instances_val2017.json',
        img_prefix='data/coco/val2017/',
        pipeline=[  # Pipeline is passed by test_pipeline created before
            dict(type='LoadImageFromFile'),
            dict(
                type='MultiScaleFlipAug',
                img_scale=(1333, 800),
                flip=False,
                transforms=[
                    dict(type='Resize', keep_ratio=True),
                    dict(type='RandomFlip'),
                    dict(
                        type='Normalize',
                        mean=[123.675, 116.28, 103.53],
                        std=[58.395, 57.12, 57.375],
                        to_rgb=True),
                    dict(type='Pad', size_divisor=32),
                    dict(type='ImageToTensor', keys=['img']),
                    dict(type='Collect', keys=['img'])
                ])
        ]),
    test=dict(  # Test dataset config, modify the ann_file for test-dev/test submission
        type='CocoDataset',
        ann_file='data/coco/annotations/instances_val2017.json',
        img_prefix='data/coco/val2017/',
        pipeline=[  # Pipeline is passed by test_pipeline created before
            dict(type='LoadImageFromFile'),
            dict(
                type='MultiScaleFlipAug',
                img_scale=(1333, 800),
                flip=False,
                transforms=[
                    dict(type='Resize', keep_ratio=True),
                    dict(type='RandomFlip'),
                    dict(
                        type='Normalize',
                        mean=[123.675, 116.28, 103.53],
                        std=[58.395, 57.12, 57.375],
                        to_rgb=True),
                    dict(type='Pad', size_divisor=32),
                    dict(type='ImageToTensor', keys=['img']),
                    dict(type='Collect', keys=['img'])
                ])
        ]))
evaluation = dict(  # The config to build the evaluation hook, refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/evaluation/eval_hooks.py#L7 for more details.
    interval=1,  # Evaluation interval
    metric=['bbox', 'segm'])  # Metrics used during evaluation
optimizer = dict(  # Config used to build optimizer, support all the optimizers in PyTorch whose arguments are also the same as those in PyTorch
    type='SGD',  # Type of optimizers, refer to https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/optimizer/default_constructor.py#L13 for more details
    lr=0.02,  # Learning rate of optimizers, see detail usages of the parameters in the documentaion of PyTorch
    momentum=0.9,  # Momentum
    weight_decay=0.0001)  # Weight decay of SGD
optimizer_config = dict(  # Config used to build the optimizer hook, refer to https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/optimizer.py#L8 for implementation details.
    grad_clip=None)  # Most of the methods do not use gradient clip
lr_config = dict(  # Learning rate scheduler config used to register LrUpdater hook
    policy='step',  # The policy of scheduler, also support CosineAnealing, Cyclic, etc. Refer to details of supported LrUpdater from https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/lr_updater.py#L9.
    warmup='linear',  # The warmup policy, also support `exp` and `constant`.
    warmup_iters=500,  # The number of iterations for warmup
    warmup_ratio=
    0.001,  # The ratio of the starting learning rate used for warmup
    step=[8, 11])  # Steps to decay the learning rate
total_epochs = 12  # Total epochs to train the model
checkpoint_config = dict(  # Config to set the checkpoint hook, Refer to https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/checkpoint.py for implementation.
    interval=1)  # The save interval is 1
log_config = dict(  # config to register logger hook
    interval=50,  # Interval to print the log
    hooks=[
        # dict(type='TensorboardLoggerHook')  # The Tensorboard logger is also supported
        dict(type='TextLoggerHook')
    ])  # The logger used to record the training process.
dist_params = dict(backend='nccl')  # Parameters to setup distributed training, the port can also be set.
log_level = 'INFO'  # The level of logging.
load_from = None  # load models as a pre-trained model from a given path. This will not resume training.
resume_from = None  # Resume checkpoints from a given path, the training will be resumed from the epoch when the checkpoint's is saved.
workflow = [('train', 1)]  # Workflow for runner. [('train', 1)] means there is only one workflow and the workflow named 'train' is executed once. The workflow trains the model by 12 epochs according to the total_epochs.
work_dir = 'work_dir'  # Directory to save the model checkpoints and logs for the current experiments.

模型测试

数据集测试

图片测试(可视化)

你可能感兴趣的:(DL,Learning)