转自 http://www.cnblogs.com/suno/archive/2008/02/04/1064368.html
利用积性函数的优化.
这个文章主要介绍了3算法
1线性时间筛素数
2线性时间求前n个数的欧拉函数值
3线性时间求前n个数的约数个数
一、 首先介绍下积性函数。
下面是wiki的条目:
在非数论的领域,积性函数指有对于任何a,b都有性质f(ab)=f(a)f(b)的函数。
在数论中的积性函数。对于正整数n的一个算术函数f(n),当中f(1)=1且当a,b互质,f(ab)=f(a)f(b),在数论上就称它为积性函数。
若某算术函数f(n)符合f(1)=1,且就算a,b不互质,f(ab)=f(a)f(b),称它为完全积性的。
例子
φ(n) -欧拉φ函数,计算与n互质的正整数之数目
μ(n) -默比乌斯函数,关于非平方数的质因子数目
gcd(n,k) -最大公因子,当k固定的情况
d(n) -n的正因子数目
σ(n) -n的所有正因子之和
σk(n): 因子函数,n的所有正因子的k次幂之和,当中k可为任何复数。在特例中有:
σ0(n) = d(n) 及
σ1(n) = σ(n)
1(n) -不变的函数,定义为 1(n)=1 (完全积性)
Id(n) -单位函数,定义为 Id(n)=n (完全积性)
Idk(n) -幂函数,对于任何复数、实数k,定义为Idk(n) = nk (完全积性)
Id0(n) = 1(n) 及
Id1(n) = Id(n)
ε(n) -定义为:若n = 1,ε(n)=1;若n > 1,ε(n)=0。有时称为“对于狄利克雷回旋的乘法单位”(完全积性)
(n/p) -勒让德符号,p是固定质数(完全积性)
λ(n) -刘维尔函数,关于能整除n的质因子的数目
γ(n),定义为γ(n)=(-1)ω(n),在此加性函数ω(n)是不同能整除n的质数的数目
所有狄利克雷特性均是完全积性的
二、再介绍下线性筛素数方法
利用了每个合数必有一个最小素因子。
每个合数仅被它的最小素因子筛去正好一次。所以为线性时间。
代码中体现在:
if(i%pr[j]==0)break;
pr数组中的素数是递增的,当i能整除pr[j],那么i*pr[j+1]这个合数肯定被pr[j]乘以某个数筛掉。
因为i中含有pr[j],pr[j]比pr[j+1]小。接下去的素数同理。所以不用筛下去了。
在满足i%pr[j]==0这个条件之前以及第一次满足改条件时,pr[j]必定是pr[j]*i的最小因子。
三、结合线性筛素数算法的优化算法
基于这个线性筛素数算法,我们可以很容易地得到某个数的最小素因子。
因为当i%pr[j]!=0的时候,最小素因子pr[j]与i互质,满足积性函数的条件,可以直接得到f(i*pr[j])=f(i)*f(pr[j]).
不过当i%pr[j]==0时我们必须根据该积性函数本身的特性进行计算.或者在筛的同时保存并递推些附加信息.总之要O(1)求得f(i*pr[j])及完成递推附加信息.
下面的两个例子是欧拉函数phi和约数个数.这两个是最常用和最有优化价值的。
利用上面的性质都可以很容易地把前n个用O(n)时间推出来.
当然,利用这个性质还可以对其他积性函数进行优化,这里仅介绍两个常用和有优化价值的。
1)欧拉函数(phi)
传统的算法:
对于某素数p且p|n(n能整除p)
if( (n/p) % i == 0 ) phi(n)=phi(n/p)*i;
else phi(n)=phi(n/p)*(i-1);
这个传统算法的性质正好用在筛素数算法中.
p为n的最小素因子,当n/p包含该因子p,则phi(n)=phi(n/p)*i;否则phi(n)=phi(n/p)*(i-1);
p即pr[j], n/p即i, n即i*pr[j]了.
2)约数个数(divnum)
约数不能像phi那么自然,但还是有不错的方法.
约数个数有个性质
divnum(n)=(e1+1)*(e2+1)...(ei表示n的第i个质因数的个数.)
传统方法就是对每个数分解质因数,获得各因数个数再用上式.
开一个空间e[i]表示最小素因子的次数
这次说直接点:
筛到i 第j个素数
对于divnum
如果i|pr[j] 那么 divnum[i*pr[j]]=divsum[i]/(e[i]+1)*(e[i]+2) //最小素因子次数加1
否则 divnum[i*pr[j]]=divnum[i]*divnum[pr[j]] //满足积性函数条件
对于e
如果i|pr[j] e[i*pr[j]]=e[i]+1; //最小素因子次数加1
否则 e[i*pr[j]]=1; //pr[j]为1次
Eular函数代码如下:
#include <cstdlib> #include <cstdio> #include <algorithm> #define MAXN 1000000 using namespace std; int p[MAXN+5], pri[1000000], idx = -1; int phi[MAXN+5]; void GetPrime() { for (int i = 2; i <= MAXN; ++i) { if (!p[i]) { // 说明i是一个素数 pri[++idx] = i; } for (int j = 0; j <= idx && pri[j]*i <= MAXN; ++j) {// 遍历所有的素因子 p[pri[j]*i] = 1; if (i % pri[j] == 0) { // 如果i能够整除pri[j]那么i*pri[j+1]就一定被pri[j]数整除 break; } } } printf("idx = %d\n", idx); for (int i = 0; i <= 100; ++i) { printf("%d ", pri[i]); } puts(""); } // 现在计算phi[N=p^e]的取值,由于p是一个素数,我们可以知道在 1 ~ p^e 中的数有 1*p, 2*p, 3*p ... [p^(e-1)]*p // 一共有p^(e-1)个不与p^e互质,所以phi[N] = p^e - p^(e-1) = [p^(e-1)]*(p-1) = << phi[N/p]*p >> // N = p1^e1 * p2^e2 *.... 中 如果 e1 = 1 的话,那么我们由欧拉函数积性直接等于 phi[i/p1] * phi[p1] // 如果 e1 != 1,那么我们就直接利用上面尖括号包括的式子得到 phi[N] = phi[i/p1] * p1 void Eular() { for (int i = 2; i <= MAXN; ++i) { if (!p[i]) { phi[i] = i - 1; // 如果是一个素数,欧拉函数就是 i-1 continue; } for (int j = 0; pri[j] * pri[j] <= i; ++j) { // 进入的 i 一定是一个合数 if (i % pri[j] == 0) { // 如果pri[j]是i的一个素因子 if (i / pri[j] % pri[j] == 0) { // 并且这个素因子还有两个以上的指数 phi[i] = pri[j] * phi[i/pri[j]]; // 那么就直接乘以这个素因子 } else { phi[i] = phi[pri[j]] * phi[i/pri[j]]; } break; } } printf("phi[%d] = %d\n", i, phi[i]); getchar(); } return; } int main() { GetPrime(); Eular(); // system("pause"); return 0; }