- Kaggle房价预测
一名小菜鸟的学习之路
深度学习pytorch深度学习机器学习python人工智能神经网络
Kaggle房价预测作为深度学习基础篇章的总结,我们将对本章内容学以致用。下面,让我们动手实战一个Kaggle比赛:房价预测。本节将提供未经调优的数据的预处理、模型的设计和超参数的选择。我们希望读者通过动手操作、仔细观察实验现象、认真分析实验结果并不断调整方法,得到令自己满意的结果。%matplotlibinlineimporttorchimporttorch.nnasnnimportnumpya
- C++ 与机器学习:构建高效推理引擎的秘诀
salsm
C++编程魔法师c++机器学习开发语言
随着深度学习模型逐渐从研究走向生产环境,推理能力成为部署中的关键环节。模型的推理引擎需要以极低的延迟快速处理输入数据,同时最大化地利用硬件资源。虽然Python被广泛用于模型的训练和开发,但C++却在推理领域独占鳌头,其性能优势和硬件控制能力无可替代。在这篇文章中,我们将从为什么选择C++、构建高效推理引擎的细节,以及相似的开源项目三个方面深入探讨如何利用C++打造高效的机器学习推理引擎。目录为什
- 《动手学深度学习》(PyTorch版)
chaser&upper
深度学习pytorch深度学习python
《动手学深度学习》PyTorch版前言简介面向人群食用方法方法一方法二方法三目录原书地址引用阅读指南前言读书啦!!!本项目将《动手学深度学习》原书中MXNet代码实现改为PyTorch实现。原书作者:阿斯顿·张、李沐、扎卡里C.立顿、亚历山大J.斯莫拉以及其他社区贡献者,GitHub地址:https://github.com/d2l-ai/d2l-zh此书的中英版本存在一些不同,针对此书英文版的P
- 从简单到深刻的认知发展
AI架构设计之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
认知发展,人工智能,深度学习,神经网络,机器学习,自然语言处理,计算机视觉1.背景介绍认知发展是人类从简单到复杂的思维方式演进的过程,它涉及感知、记忆、语言、推理和决策等多个方面。随着人工智能技术的飞速发展,我们开始尝试用计算机模拟人类的认知能力,构建能够学习、理解和解决复杂问题的智能系统。从早期的符号逻辑到如今的深度学习,人工智能的发展经历了多个阶段。早期的人工智能研究主要集中在规则和逻辑推理上
- 使用onnxruntime-web 运行yolov8-nano推理
CHEN_RUI_2200
机器学习YOLO
ONNX(OpenNeuralNetworkExchange)模型具有以下两个特点促成了我们可以使用onnxruntime-web直接在web端上运行推理模型,为了让这个推理更直观,我选择了试验下yolov8识别预览图片:1.跨平台兼容性ONNX是一种开放的格式,可以在不同的深度学习框架之间共享模型,如PyTorch、TensorFlow、MXNet和Caffe2。这使得用户可以在一个框架中训练模
- 人工智能学习框架:深入解析与实战指南
一ge科研小菜鸡
人工智能人工智能
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注引言随着人工智能(AI)技术的飞速发展,深度学习、强化学习和自然语言处理等领域的应用愈加广泛。掌握人工智能学习框架(如TensorFlow、PyTorch、Keras等)已成为开发智能系统、研究前沿技术的必备技能。本指南将全面介绍人工智能主流学习框架的特点、安装方法、核心功能,以及通过实践案例展示如何使用这些框架进行AI模型开发、训练与优化。1.
- AI人工智能深度学习算法:搭建可拓展的深度学习模型架构
AI天才研究院
大数据AI人工智能AI大模型企业级应用开发实战大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
AI人工智能深度学习算法:搭建可拓展的深度学习模型架构作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着人工智能技术的飞速发展,深度学习作为其主要驱动力之一,已经在各个领域取得了显著的成果。然而,随着模型规模的不断扩大,如何高效地搭建、训练和部署深度学习模型,成为一个亟待解决的问题。传统的单机训练方式在计算资源有限的情况
- # 第一章:认识chatgpt
出门喝奶茶
chatgptchatgpt
chatgpt发展背景详细介绍一、基础理论背景人工智能和自然语言处理的兴起早期理论:20世纪中期,人工智能(AI)初见端倪,目标是模拟人类智能。自然语言处理作为AI的重要分支,致力于让机器理解和生成人类语言。关键里程碑:1980年代的统计方法和2000年代的神经网络技术,使NLP实现了从规则驱动到数据驱动的转变。神经网络与深度学习2010年代,深度学习的兴起极大推动了NLP的发展。基于大规模语料库
- 机器学习&深度学习目录
UQI-LIUWJ
各专栏目录深度学习人工智能1024程序员节
机器学习模型机器学习笔记:Transformer_刘文巾的博客-CSDN博客attention相关机器学习笔记:attention_UQI-LIUWJ的博客-CSDN博客机器学习笔记:ELMOBERT_UQI-LIUWJ的博客-CSDN博客机器学习笔记:ViT(论文AnImageIsWorth16X16Words:TransformersforImageRecognitionatScale)_UQ
- 遥感深度学习过程中图像分割的尺寸对模型训练结果的影响
司南锤
深度学习遥感深度学习人工智能
1.计算资源与显存占用大尺寸图像:需要更高的显存和计算资源,可能限制训练时的批大小(batchsize),甚至导致无法训练。解决方案:通常将大图裁剪为小尺寸的补丁(patches),例如256x256或512x512。小尺寸图像:显存占用低,但可能丢失全局上下文信息(如大面积地物分布),影响模型对复杂场景的理解。2.模型感受野与上下文信息小尺寸输入:模型感受野受限,可能无法捕捉大范围地物(如河流、
- #深度学习:从基础到实践
single_ffish
深度学习gpt神经网络生成对抗网络1024程序员节
深度学习是人工智能领域近年来最为火热的技术之一。它通过构建由多个隐藏层组成的神经网络模型,能够从海量数据中自动学习特征和表征,在图像识别、自然语言处理、语音识别等领域取得了突破性进展。本文将全面介绍深度学习的基础知识、主要算法和实践应用,帮助您快速掌握这一前沿技术。1.深度学习的基础1.1人工神经网络深度学习是基于人工神经网络(ArtificialNeuralNetwork,ANN)的一种机器学习
- 【深度学习|地学应用】遥感与深度学习:揭示梦柯冰川奥秘的前沿应用与实践解析
985小水博一枚呀
深度学习地学应用深度学习人工智能
【深度学习|地学应用】遥感与深度学习:揭示梦柯冰川奥秘的前沿应用与实践解析【深度学习|地学应用】遥感与深度学习:揭示梦柯冰川奥秘的前沿应用与实践解析文章目录【深度学习|地学应用】遥感与深度学习:揭示梦柯冰川奥秘的前沿应用与实践解析前言一、使用高分6号遥感影像结合深度学习对梦柯冰川的研究方向1.冰川边界自动化提取2.冰川变化动态监测3.冰川分类与分布特征分析二、梦柯冰川(MunkuGlacier)的
- 基于R-CNN深度学习的无人机目标检测系统:数据集、模型和UI界面的完整实现
2025年数学建模美赛
R-CNN检测系统深度学习cnn无人机计算机视觉目标检测人工智能
摘要随着无人机技术的迅猛发展,无人机在军事、农业、环境监测等多个领域的应用日益广泛。无人机目标检测系统的建设成为提升无人机自主飞行和环境感知能力的重要环节。本文将详细介绍如何构建一个基于深度学习的无人机目标检测系统,采用R-CNN(区域卷积神经网络)算法,通过用户界面设计和数据集处理,实现高效的目标检测功能。通过本项目,旨在为无人机目标检测提供一种可行的解决方案,并提高其在复杂环境下的工作效率。目
- 【Python】已解决:error: subprocess-exited-with-error
屿小夏
python开发语言linux
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- AI在电商平台商品描述生成中的应用
AI天才研究院
计算AI大模型企业级应用开发实战大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
AI在电商平台商品描述生成中的应用关键词:人工智能、电商平台、商品描述、自然语言处理、机器学习、深度学习摘要:本文深入探讨了人工智能在电商平台商品描述生成中的应用。首先,我们回顾了人工智能的概述和电商平台的发展背景。随后,分析了商品描述在电商平台中的重要性以及存在的问题。接下来,我们重点介绍了AI在商品描述生成中的应用技术,包括自然语言处理、机器学习和深度学习等。文章还通过实战案例展示了AI商品描
- 【Python】已解决:(cmd进入Python环境报错)No Python at ‘C:\Users…\Python\Python39\python.exe’
屿小夏
pythonlinux开发语言
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 深度学习之基于Django+YOLOv5商标识别
Q1744828575
pythonplotlypython
欢迎大家点赞、收藏、关注、评论啦,由于篇幅有限,只展示了部分核心代码。文章目录一项目简介二、功能三、系统四.总结一项目简介 一、项目背景在数字化时代,商标作为企业的重要资产,其保护和管理显得尤为重要。然而,传统的商标识别方法往往依赖于人工审查,效率低下且容易出错。随着深度学习技术的不断发展,尤其是目标检测领域的进步,自动化、高精度的商标识别成为可能。本项目旨在利用DjangoWeb框架和YOLO
- 动手学深度学习-卷积神经网络-3填充和步幅
像污秽一样
动手学深度学习深度学习cnn人工智能神经网络
目录填充步幅小结在上一节的例子(下图)中,输入的高度和宽度都为3,卷积核的高度和宽度都为2,生成的输出表征的维数为2×2。正如我们在上一节中所概括的那样,假设输入形状为nh×nw,卷积核形状为kh×kw,那么输出形状将是(nh−kh+1)×(nw−kw+1)。因此,卷积的输出形状取决于输入形状和卷积核的形状。还有什么因素会影响输出的大小呢?本节我们将介绍填充(padding)和步幅(stride)
- RTX 4090D和A10和T4显卡差别、价格对比
张3蜂
软件安装部署开源神经网络人工智能深度学习机器学习
RTX4090D、NVIDIAA10和NVIDIAT4三款显卡在设计用途、性能、功耗、价格等方面都有显著差异,以下是它们的主要区别:1.设计用途:RTX4090D:面向高端消费者市场,主要用于游戏、内容创作和3D渲染,适合需要高图形性能的用户,如游戏玩家和内容创作者。NVIDIAA10:专为数据中心和企业应用设计,优化了AI推理、深度学习、虚拟桌面基础设施(VDI)以及多实例GPU(多用户共享显卡
- 【TVM教程】为 Mobile GPU 自动调优卷积网络
ApacheTVM是一个深度的深度学习编译框架,适用于CPU、GPU和各种机器学习加速芯片。更多TVM中文文档可访问→https://tvm.hyper.ai/作者:LianminZheng,EddieYan针对特定设备的自动调优对于获得最佳性能至关重要。本文介绍如何调优整个卷积网络。TVM中MobileGPU的算子实现是以template形式编写的。该template有许多可调参数(tile因子
- 非凸科技招聘来啦!技术岗及非技术岗由你选!欢迎大家加入!
招聘
公司介绍:非凸科技成立于2018年,是国内领先的智能算法和交易系统服务公司,专注于智能算法交易领域的研究和开发。公司特点:投研团队来自华尔街顶级资管公司BlackRock等,以及多位来自腾讯、字节跳动的顶尖工程师;在职员工100+,投研和技术团队占总人数比例75%,多位成员是ACM/ICPCWorldFinal选手;公司司正基于Rust生态,结合机器学习、深度学习等新兴技术,打造高效率、低延迟、高
- 深度学习-70-大语言模型LLM之基于大模型LLM与检索增强技术RAG的智能知识库
皮皮冰燃
深度学习人工智能深度学习语言模型
文章目录1RAG出现的背景2搭建过程2.1数据收集2.2数据处理2.2.1数据清洗与预处理2.2.2文本分块2.2.3微调数据格式统一2.3建立向量索引2.4大模型选择与微调3开源知识库项目3.1FastGPT3.2AnythingLLM3.3LangChain-Chatchat4商业化解决方案4.1百度智能云+千帆大模型知识库4.2阿里云PAI+向量检索5参考附录1RAG出现的背景自从2022年
- transformer.js(一):这个前端大模型运行框架的可运行环境、使用方式、代码示例以及适合与不适合的场景
余生H
前端的AI工具书前端transformerjavascripthugginfacewebmlweb大模型
随着大模型的广泛应用,越来越多的开发者希望在前端直接运行机器学习模型,从而减少对后端的依赖,并提升用户体验。Transformer.js是一个专为前端环境设计的框架,它支持运行基于Transformer架构的深度学习模型,尤其是像BERT、GPT等广泛应用于自然语言处理(NLP)的模型。本文将全面解析Transformer.js的运行环境、使用方式、代码示例,以及其能够完成的功能与目前的限制,帮助
- Python magenta库:一款人工智能生成音乐与艺术的创新工具
程序员喵哥
python人工智能开发语言
更多Python学习内容:ipengtao.com随着人工智能在创意领域的不断进步,音乐和艺术生成正成为一种新的可能性。Magenta是由Google推出的一个开源项目,它结合了深度学习与艺术创作,为开发者提供了一系列强大的工具,帮助他们创作音乐、绘画等艺术作品。基于TensorFlow,Magenta不仅适用于研究人员,也适合开发者和艺术家,提供了易于上手的API和丰富的模型。安装在使用Mage
- Python&aconda系列:CUDA+Anaconda的安装以及 Conda实用命令
坦笑&&life
#pythonpythonconda开发语言
这里写目录标题一.深度学习环境配置:CUDA+Anaconda的安装3.1.1CUDA简介3.1.2查看电脑显卡型号是否支持CUDA的安装3.1.3查看电脑显卡的驱动版本3.1.4根据显卡驱动版本下载支持的CUDA版本3.1.5检查CUDA是否安装成功3.1.6安装Anaconda3.1.7检查Anaconda是否安装成功3.1.8配置Anaconda的安装包下载源二.Conda实用命令conda
- 深度学习探索:ChatGPT数据分析精髓 & 梯度下降优化方法深度剖析
网罗开发
AI大模型人工智能深度学习chatgpt数据分析
网罗开发(小红书、快手、视频号同名) 大家好,我是展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、HarmonyOS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。图书作者:《ESP32-C3物联网工程开发实战》图书作者:《SwiftUI入门,进阶与实战》超级个体:CO
- 【深度学习】Squeeze-and-Excitation (SE) 模块优势解读
理想不闪火
深度学习入门到精通系列讲解
【深度学习】Squeeze-and-Excitation(SE)模块优势解读文章目录1概念辨析—下采样和上采样2Squeeze-and-Excitation(SE)3压缩(Squeeze)4激励(Excitation)5scale操作6相乘特征融合7SE模块的实现8优势1概念辨析—下采样和上采样概念上
- 人工智能技术的应用前景及未来发展
键盘上的蚂蚁-
人工智能生活
引言人工智能(AI)作为21世纪最具创新性和革命性的技术之一,正在全球范围内深刻地改变着我们的生产、工作和生活方式。随着深度学习、强化学习、自然语言处理(NLP)、计算机视觉(CV)等技术的飞速进展,AI不再仅仅是学术研究中的一个热点,而是渗透到各个行业,成为推动创新、优化生产和提升效率的核心力量。对于开发者来说,理解和掌握AI技术不仅是提升个人技能的途径,更是应对未来技术变革、抓住职业机遇的关键
- AI人工智能深度学习算法:在生物信息学中的应用
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI人工智能深度学习算法:在生物信息学中的应用关键词:人工智能、深度学习、生物信息学、基因组学、蛋白质结构预测、药物发现、个性化医疗文章目录AI人工智能深度学习算法:在生物信息学中的应用1.背景介绍2.核心概念与联系2.1人工智能(AI)2.2机器学习(ML)2.3深度学习(DL)2.4生物信息学2.5应用领域3.核心算法原理&具体操作步骤3.1算法原理概述3.1.1卷积神经网络(CNN)3.1.
- 深度学习——模型过拟合和欠拟合的原因及解决方法
发呆小天才O.o
深度学习深度学习人工智能
一、定义1.过拟合(Overfitting)过拟合是指模型在训练数据上表现非常好,但在测试数据或新的数据上表现很差的现象。模型过度地学习了训练数据中的细节和噪声,以至于它无法很好地泛化到未见过的数据。例如,在一个图像分类任务中,过拟合的模型可能对训练集中的每一张图像的特定细节(如某张猫图片背景中的一个小污点)都学习得过于精细,以至于在测试集中,只要图像背景稍有不同,就无法正确分类。2.欠拟合(Un
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
 
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" { 
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持