AI学习笔记(二)

Games as Adversarial Search

• States:
– board configurations
• Initial state:
– the board position and which player will move
• Successor function:
– returns list of (move, state) pairs, each indicating a legal
move and the resulting state
• Terminal test:
– determines when the game is over
• Utility function:
– gives a numeric value in terminal states
(e.g., -1, 0, +1 for loss, tie, win)

CSP

A binary constraint relates two variables.

Forward Checking

每次进行操作后,Keep track of remaining legal values for unassigned variables,Terminate search when any variable has no legal values

Arc Consistency (AC-3)

arc consistency: Xi arc-consistent with Xj if for every value in Di there exists a value in Dj that satisfies the binary constraints on arc (Xi, Xj)
维护一个queue,初始状态下queue里面包含所有的arcs, 然后pop出来一个,Pop one arc (Xi, Xj) and make Xi arc-consistent with respect to Xj:
如果Di没变,continue
如果Di变了,重新检查和Xi相连的arcs,add all connected arcs (Xk, Xi) to the queue.
If Di is revised to empty, then the CSP problem has no solution.
Time complexity: O(n2d3) (n variables, d values)一共n个变量,每个变量里有d个取值
(each arc can be queued only d times, n^2 arcs (at most), checking one arc is O(d^2))

Min-confilcts

如果是解,那就返回解
如果不是解,随机选择一个冲突的变量,找到一个值能够使改变量冲突降到最低的,将变量设置为该值
实质上是一种Local Search

Adversarial SEARCH

Minimax

MINIMAX-VALUE(n)= UTILITY(n)
maxs ∈ successors(n) MINIMAX-VALUE(s) mins ∈ successors(n) MINIMAX-VALUE(s)
If n is a terminal If n is a max node If n is a min node
实质上是一种回溯
Completeness
• Yes (exhaustive) Optimality
• Yes (exhaustive)
•Time complexity O(b^m) 要遍历一遍节点
•Space complexity O(bm) or O(m)

Alpha-Beta pruning

http://inst.eecs.berkeley.edu/~cs61b/fa14/ta-materials/apps/ab_tree_practice/ 这个网站有动画模拟功能
在min节点只更新beta值,在max节点只更新alpha值 alpha 》= beta时进行pruning

Cutting off search

replace the two lines in Figure 5.7 that mention TERMINAL-TEST with the following line:
if CUTOFF-TEST(state, depth) then return EVAL(state)

你可能感兴趣的:(AI学习笔记(二))