Linux进程管理(二)--fork

基于Kernel 4.4源码

kernel/include/linux/sched.h
kernel/include/linux/kthread.h
kernel/arch/arm/include/asm/thread_info.h

kernel/kernel/fork.c
kernel/kernel/exit.c
kernel/kernel/sched/core.c

一. 概述

Linux创建进程采用fork()和exec()

  • fork: 采用复制当前进程的方式来创建子进程,此时子进程与父进程的区别仅在于pid, ppid以及资源统计量(比如挂起的信号)
  • exec:读取可执行文件并载入地址空间执行;一般称之为exec函数族,有一系列exec开头的函数,比如execl, execve等

fork过程复制资源包括代码段,数据段,堆,栈。fork调用者所在进程便是父进程,新创建的进程便是子进程;在fork调用结束,从内核返回两次,一次继续执行父进程,一次进入执行子进程。

1.1 进程创建

  • Linux进程创建: 通过fork()系统调用创建进程
  • Linux用户级线程创建:通过pthread库中的pthread_create()创建线程
  • Linux内核线程创建: 通过kthread_create()

Linux线程,也并非”轻量级进程”,在Linux看来线程是一种进程间共享资源的方式,线程可看做是跟其他进程共享资源的进程。

fork, vfork, clone根据不同参数调用do_fork

  • pthread_create: flags参数为 CLONE_VM, CLONE_FS, CLONE_FILES, CLONE_SIGHAND
  • fork: flags参数为 SIGCHLD
  • vfork: flags参数为 CLONE_VFORK, CLONE_VM, SIGCHLD

1.2 fork流程图

进程/线程创建的方法fork(),pthread_create(), 万物归一,最终在linux都是调用do_fork方法。 当然还有vfork其实也是一样的, 通过系统调用到sys_vfork,然后再调用do_fork方法,该方法 现在很少使用,所以下图省略该方法。

Linux进程管理(二)--fork_第1张图片
do_fork

fork执行流程:

  1. 用户空间调用fork()方法;
  2. 经过syscall陷入内核空间, 内核根据系统调用号找到相应的sys_fork系统调用;
  3. sys_fork()过程会在调用do_fork(), 该方法参数有一个flags很重要, 代表的是父子进程之间需要共享的资源; 对于进程创建flags=SIGCHLD, 即当子进程退出时向父进程发送SIGCHLD信号;
  4. do_fork(),会进行一些check过程,之后便是进入核心方法copy_process.

1.3 flags参数

进程与线程最大的区别在于资源是否共享,线程间共享的资源主要包括内存地址空间,文件系统,已打开文件,信号等信息, 如下图蓝色部分的flags便是线程创建过程所必需的参数。

Linux进程管理(二)--fork_第2张图片
clone_flags

fork采用Copy on Write机制,父子进程共用同一块内存,只有当父进程或者子进程执行写操作时会拷贝一份新内存。 另外,创建进程也是有可能失败,比如进程个数达到系统上限(32768)或者系统可用内存不足。

接下来进一步介绍fork过程。

二. fork源码分析

linux程序执行fork方法,通过中断(syscall)陷入内核,执行系统提供的相应系统调用来完成进程创建过程。

2.1 fork

[-> kernel/fork.c]

2.1.1 fork

//fork系统调用
SYSCALL_DEFINE0(fork)
{
  return do_fork(SIGCHLD, 0, 0, NULL, NULL);
}

2.1.2 vfork

//vfork系统调用
SYSCALL_DEFINE0(vfork)
{
  return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
      0, NULL, NULL, 0);
}

2.1.3 clone

//clone系统调用
#ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
     int __user *, parent_tidptr,
     unsigned long, tls,
     int __user *, child_tidptr)
#elif defined(CONFIG_CLONE_BACKWARDS2)
SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
     int __user *, parent_tidptr,
     int __user *, child_tidptr,
     unsigned long, tls)
#elif defined(CONFIG_CLONE_BACKWARDS3)
SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
    int, stack_size,
    int __user *, parent_tidptr,
    int __user *, child_tidptr,
    unsigned long, tls)
#else
SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
     int __user *, parent_tidptr,
     int __user *, child_tidptr,
     unsigned long, tls)
#endif
{
  return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
}
#endif

可见,fork,vfork,clone最终都会调用do_fork方法,仅仅是flags不同。

2.2 do_fork

[-> kernel/fork.c]

long do_fork(unsigned long clone_flags,
        unsigned long stack_start,
        unsigned long stack_size,
        int __user *parent_tidptr,
        int __user *child_tidptr)
{
  return _do_fork(clone_flags, stack_start, stack_size,
      parent_tidptr, child_tidptr, 0);
}

参数说明:

  • clone_flags:clone方法传递过程的flags,标记子进程从父进程中需要继承的资源清单
  • stack_start: 子进程用户态的堆栈地址,fork()过程该值为0, clone()过程赋予有效值
  • stack_size:不必要的参数,默认设置为0
  • parent_tidptr:用户态下父进程的tid地址
  • child_tidptr:用户态下子进程的tid地址
  • tls:

2.3 _do_fork

long _do_fork(unsigned long clone_flags,
        unsigned long stack_start,
        unsigned long stack_size,
        int __user *parent_tidptr,
        int __user *child_tidptr,
        unsigned long tls)
{
  struct task_struct *p;
  ...

  //复制进程描述符【见小节2.4】
  p = copy_process(clone_flags, stack_start, stack_size,
       child_tidptr, NULL, trace, tls);

  if (!IS_ERR(p)) {
    struct completion vfork;
    struct pid *pid;

    trace_sched_process_fork(current, p);
     //获取新创建的子进程的pid
    pid = get_task_pid(p, PIDTYPE_PID);
    nr = pid_vnr(pid);

    if (clone_flags & CLONE_PARENT_SETTID)
      put_user(nr, parent_tidptr);

    if (clone_flags & CLONE_VFORK) { //仅用于vfork过程,初始化
      p->vfork_done = &vfork;
      init_completion(&vfork);
      get_task_struct(p);
    }

    wake_up_new_task(p); //唤醒子进程,分配CPU时间片

    if (unlikely(trace)) //告知ptracer,子进程已创建完成,并且已启动
      ptrace_event_pid(trace, pid);

    if (clone_flags & CLONE_VFORK) { //仅用于vfork过程,等待子进程
      if (!wait_for_vfork_done(p, &vfork))
        ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
    }

    put_pid(pid); 
  } else {
    nr = PTR_ERR(p);
  }
  return nr;
}

该方法过程说明:

  1. 执行copy_process,复制进程描述符,pid分配也是这个过程完成
  2. 当为vfork,则执行相应的初始化过程
  3. 执行wake_up_new_task,唤醒子进程,分配CPU时间片
  4. 当为vfork,则父进程等待子进程执行exec函数来替换地址空间

2.4 copy_process

[-> kernel/fork.c]

static struct task_struct *copy_process(unsigned long clone_flags,
          unsigned long stack_start,
          unsigned long stack_size,
          int __user *child_tidptr,
          struct pid *pid,
          int trace,
          unsigned long tls)
{
  int retval;
  struct task_struct *p;
  void *cgrp_ss_priv[CGROUP_CANFORK_COUNT] = {};
  ...
  retval = security_task_create(clone_flags);
  ...

  //【见小节2.4.1】
  p = dup_task_struct(current); 
  ...
  rt_mutex_init_task(p); //初始化mutex

  //检查进程数是否超过上限
  retval = -EAGAIN;
  if (atomic_read(&p->real_cred->user->processes) >=
      task_rlimit(p, RLIMIT_NPROC)) {
    if (p->real_cred->user != INIT_USER &&
        !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
      goto bad_fork_free;
  }
  current->flags &= ~PF_NPROC_EXCEEDED;

  retval = copy_creds(p, clone_flags);
  ...

  //检查nr_threads是否超过max_threads
  retval = -EAGAIN;
  if (nr_threads >= max_threads)
    goto bad_fork_cleanup_count;

  delayacct_tsk_init(p);
  p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
  p->flags |= PF_FORKNOEXEC;
  INIT_LIST_HEAD(&p->children);
  INIT_LIST_HEAD(&p->sibling);
  rcu_copy_process(p);
  p->vfork_done = NULL;
  spin_lock_init(&p->alloc_lock); //初始化自旋锁
  init_sigpending(&p->pending);   //初始化挂起信号

  p->utime = p->stime = p->gtime = 0;
  p->utimescaled = p->stimescaled = 0;
  prev_cputime_init(&p->prev_cputime);
  p->default_timer_slack_ns = current->timer_slack_ns;

  task_io_accounting_init(&p->ioac);
  acct_clear_integrals(p);
  posix_cpu_timers_init(p);

  p->start_time = ktime_get_ns(); //初始化进程启动时间
  p->real_start_time = ktime_get_boot_ns();
  p->io_context = NULL;
  p->audit_context = NULL;
  cgroup_fork(p);
  p->pagefault_disabled = 0;

  //执行调度器相关设置,将该task分配给一某个CPU 【见小节2.4.2】
  retval = sched_fork(clone_flags, p); 
  retval = perf_event_init_task(p);
  retval = audit_alloc(p);

  //拷贝进程的所有信息[见小节3.1]
  shm_init_task(p); 
  retval = copy_semundo(clone_flags, p);
  retval = copy_files(clone_flags, p);
  retval = copy_fs(clone_flags, p);
  retval = copy_sighand(clone_flags, p);
  retval = copy_signal(clone_flags, p);
  retval = copy_mm(clone_flags, p);
  retval = copy_namespaces(clone_flags, p);
  retval = copy_io(clone_flags, p);
  retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);

  if (pid != &init_struct_pid) {
    //分配pid[见小节2.4.3]
    pid = alloc_pid(p->nsproxy->pid_ns_for_children);
    ...
  }
  ...
  p->pid = pid_nr(pid); //设置pid
  if (clone_flags & CLONE_THREAD) {
    p->exit_signal = -1;
    p->group_leader = current->group_leader;
    p->tgid = current->tgid;
  } else {
    if (clone_flags & CLONE_PARENT)
      p->exit_signal = current->group_leader->exit_signal;
    else
      p->exit_signal = (clone_flags & CSIGNAL);
    p->group_leader = p;
    p->tgid = p->pid;
  }

  p->nr_dirtied = 0;
  p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
  p->dirty_paused_when = 0;

  p->pdeath_signal = 0;
  INIT_LIST_HEAD(&p->thread_group);
  p->task_works = NULL;

  threadgroup_change_begin(current);
  ...

  //CLONE_PARENT再利用旧的父进程
  if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
    p->real_parent = current->real_parent;
    p->parent_exec_id = current->parent_exec_id;
  } else {
    p->real_parent = current;
    p->parent_exec_id = current->self_exec_id;
  }

  spin_lock(¤t->sighand->siglock);
  copy_seccomp(p);

  recalc_sigpending();
  if (signal_pending(current)) {
    spin_unlock(¤t->sighand->siglock);
    write_unlock_irq(&tasklist_lock);
    retval = -ERESTARTNOINTR;
    goto bad_fork_cancel_cgroup;
  }

  if (likely(p->pid)) {
    ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);

    init_task_pid(p, PIDTYPE_PID, pid);
    if (thread_group_leader(p)) {
      init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
      init_task_pid(p, PIDTYPE_SID, task_session(current));

      if (is_child_reaper(pid)) {
        ns_of_pid(pid)->child_reaper = p;
        p->signal->flags |= SIGNAL_UNKILLABLE;
      }

      p->signal->leader_pid = pid;
      p->signal->tty = tty_kref_get(current->signal->tty);
      list_add_tail(&p->sibling, &p->real_parent->children);
      list_add_tail_rcu(&p->tasks, &init_task.tasks);
      attach_pid(p, PIDTYPE_PGID);
      attach_pid(p, PIDTYPE_SID);
      __this_cpu_inc(process_counts);
    } else {
      current->signal->nr_threads++;
      atomic_inc(¤t->signal->live);
      atomic_inc(¤t->signal->sigcnt);
      list_add_tail_rcu(&p->thread_group,
            &p->group_leader->thread_group);
      list_add_tail_rcu(&p->thread_node,
            &p->signal->thread_head);
    }
    attach_pid(p, PIDTYPE_PID);
    nr_threads++; //线程个数+1
  }
  total_forks++; //进程forks次数加1
  ...
  return p;

...
fork_out:
  return ERR_PTR(retval);
}

主要功能:

  1. 执行dup_task_struct(),拷贝当前进程task_struct
  2. 检查进程数是否超过系统所允许的上限(默认32678)
  3. 执行sched_fork(),设置调度器相关信息,设置task进程状态为TASK_RUNNING,并分配CPU资源
  4. 执行copy_xxx(),拷贝进程的files, fs, mm, io, sighand, signal等信息
  5. 执行copy_thread_tls(), 拷贝子进程的内核栈信息
  6. 执行alloc_pid(),为新进程分配新pid

2.4.1 dup_task_struct

static struct task_struct *dup_task_struct(struct task_struct *orig) {
  struct task_struct *tsk;
  struct thread_info *ti;
  int node = tsk_fork_get_node(orig);
  int err;
  //分配task_struct节点
  tsk = alloc_task_struct_node(node);
  //分配thread_info节点
  ti = alloc_thread_info_node(tsk, node);
  err = arch_dup_task_struct(tsk, orig);
  //将thread_info赋值给当前新创建的task
  tsk->stack = ti;

  setup_thread_stack(tsk, orig);
  clear_user_return_notifier(tsk);
  clear_tsk_need_resched(tsk);
  set_task_stack_end_magic(tsk);
  ...

  account_kernel_stack(ti, 1);
  return tsk;
}

该方法主要功能是创建task_struct和thread_info结构体。执行完该方法,子进程唯一不同是tsk->stack。

2.4.2 sched_fork

[-> sched/core.c]

int sched_fork(unsigned long clone_flags, struct task_struct *p)
{
  unsigned long flags;
  int cpu = get_cpu();

  __sched_fork(clone_flags, p);

  //标记进程为Running状态,用于保证实际上并没有运行,
  // 信号或许其他外部事件都无法唤醒该进程,同时把它插入运行队列
  p->state = TASK_RUNNING;

  //确保不会将提升的优先级传递到子进程
  p->prio = current->normal_prio;
  ...

  //为进程p分配相应cpu
  set_task_cpu(p, cpu);
  ...

  put_cpu();
  return 0;
}

2.4.3 alloc_pid

[-> kernel/kernel/pid.c]

struct pid *alloc_pid(struct pid_namespace *ns)
{
  struct pid *pid;
  pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
  ...

  tmp = ns;
  pid->level = ns->level;
  for (i = ns->level; i >= 0; i--) {
    nr = alloc_pidmap(tmp); //分配pid
    ...
    pid->numbers[i].nr = nr; //nr保存到pid结构体
    pid->numbers[i].ns = tmp;
    tmp = tmp->parent;
  }
  ...
  return pid;
}

通过alloc_pidmap()方法来完成pid的分配工作,具体分配算法见下一篇文章Linux进程pid分配法

接下来的重头大戏是关于fs,mm等结构体的复制,见下面的过程。

三. 拷贝过程

3.1 copy_semundo

[-> kernel/ipc/sem.c]

int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
{
  struct sem_undo_list *undo_list;
  int error;

  if (clone_flags & CLONE_SYSVSEM) {
    error = get_undo_list(&undo_list);
    if (error)
      return error;
    atomic_inc(&undo_list->refcnt);
    tsk->sysvsem.undo_list = undo_list;
  } else
    tsk->sysvsem.undo_list = NULL;
  return 0;
}

当设置CLONE_SYSVSEM,则父子进程间共享SEM_UNDO状态

3.2 copy_files

[-> fork.c]

static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
{
  struct files_struct *oldf, *newf;
  int error = 0;

  //如果是后台进程可能没有files
  oldf = current->files;
  if (!oldf)
    goto out;

  //设置CLONE_FILES,则只增加文件引用计数
  if (clone_flags & CLONE_FILES) {
    atomic_inc(&oldf->count);
    goto out;
  }

  //创建新的files_struct,并拷贝内容【见小节3.2.1】
  newf = dup_fd(oldf, &error);
  if (!newf)
    goto out;

  tsk->files = newf; //新创建的files_struct赋值给新进程
  error = 0;
out:
  return error;
}

  • 当父进程没有打开文件,则不需要执行文件拷贝
  • 当设置CLONE_FILES,则只增加文件引用计数,不创建新的files_struct
  • 以上都不满足,则创建新的files_struct,并拷贝内容

3.2.1 dup_fd

[-> kernel/fs/file.c]

struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
{
  //结构体成员【见小节3.2.2】
  struct files_struct *newf;
  struct file **old_fds, **new_fds;
  int open_files, i;
  struct fdtable *old_fdt, *new_fdt;

  //创建新files_struct结构体
  newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
  ...
  atomic_set(&newf->count, 1);

  spin_lock_init(&newf->file_lock);
  newf->resize_in_progress = false;
  init_waitqueue_head(&newf->resize_wait);
  newf->next_fd = 0;

  //初始化新的fdtable
  new_fdt = &newf->fdtab;
  //NR_OPEN_DEFAULT等于BITS_PER_LONG,默认大小为32
  new_fdt->max_fds = NR_OPEN_DEFAULT; 
  new_fdt->close_on_exec = newf->close_on_exec_init;
  new_fdt->open_fds = newf->open_fds_init;
  new_fdt->full_fds_bits = newf->full_fds_bits_init;
  new_fdt->fd = &newf->fd_array[0];

  spin_lock(&oldf->file_lock); //获取自旋锁
  //获取oldf->fdt
  old_fdt = files_fdtable(oldf);
  //获取父进程(old_fdt)所打开的文件个数 【见小节3.2.3】
  open_files = count_open_files(old_fdt);

  //当父进程打开的文件个数超过32个,则需要分配更大的fd数组/集合
  while (unlikely(open_files > new_fdt->max_fds)) {
    spin_unlock(&oldf->file_lock); //释放自旋锁

    if (new_fdt != &newf->fdtab)
      __free_fdtable(new_fdt);

    //分配更多的fdtable, 大小至少1KB且满足2的指数次方【见小节3.2.4】
    new_fdt = alloc_fdtable(open_files - 1);
    ...

    //重新获取oldf锁,检查oldf最新打开的文件个数,再次检查是否小于max_fds.
    spin_lock(&oldf->file_lock);
    old_fdt = files_fdtable(oldf);
    open_files = count_open_files(old_fdt);
  }

  //拷贝父进程的fdtable信息【见小节3.2.5】
  copy_fd_bitmaps(new_fdt, old_fdt, open_files);

  old_fds = old_fdt->fd;
  new_fds = new_fdt->fd;

  for (i = open_files; i != 0; i--) {
    struct file *f = *old_fds++;
    if (f) {
      get_file(f);
    } else {
      //fd已申明在fd数组,但是还没有文件open操作刚进行到一半,那么对于新进程不可用,则需要清除
      __clear_open_fd(open_files - i, new_fdt);
    }
    //先把内存写好,再把指针f赋值给new_fds, rcu机制保证数据一致性
    rcu_assign_pointer(*new_fds++, f);
  }
  spin_unlock(&oldf->file_lock);

  //剩下的内存空间数据清零
  memset(new_fds, 0, (new_fdt->max_fds - open_files) * sizeof(struct file *));

  //将new_fdt赋值给newf->fdt
  rcu_assign_pointer(newf->fdt, new_fdt);

  return newf;

out_release:
  kmem_cache_free(files_cachep, newf);
out:
  return NULL;
}

该方法主要作用是创建和拷贝fdtable内容,然后赋值给新的file_struct的成员指针fdt;

关于RCU的几个方法说明:

  • rcu_read_lock:用于保护读者的RCU临界区,禁止抢占,不允许上下文切换;
  • rcu_read_unlock:解除保护,恢复抢占
  • rcu_assign_pointer:用于写者更新被RCU保护的指针
  • rcu_dereference:用于读者获取被RCU保护的指针
  • synchronize_rcu:等待之前所有的读取全部完成

要判断是不是被rcu_read_lock,可以观察是否发生了上下文切换(Context switch);

3.2.2 files_struct结构体

[-> kernel/include/linux/fdtable.h]

struct files_struct {
  atomic_t count; 
  bool resize_in_progress;
  wait_queue_head_t resize_wait;

  struct fdtable __rcu *fdt; //记录fdtable指针
  struct fdtable fdtab;  //记录fdtable

  spinlock_t file_lock ____cacheline_aligned_in_smp;
  int next_fd;
  unsigned long close_on_exec_init[1];
  unsigned long open_fds_init[1];
  unsigned long full_fds_bits_init[1];
  struct file __rcu * fd_array[NR_OPEN_DEFAULT];
};

#define NR_OPEN_DEFAULT BITS_PER_LONG

struct fdtable {
  unsigned int max_fds;
  struct file __rcu **fd;   //当前fd数组
  unsigned long *close_on_exec;
  unsigned long *open_fds; //打开的文件描述符
  unsigned long *full_fds_bits;
  struct rcu_head rcu;
};

3.2.3 count_open_files

[-> kernel/fs/file.c]

static int count_open_files(struct fdtable *fdt) {
  int size = fdt->max_fds; //文件描述符的最大上限
  int i;

  //查询最后打开的fd, 其中BITS_PER_LONG=32
  for (i = size / BITS_PER_LONG; i > 0; ) {
    if (fdt->open_fds[--i])
      break;
  }
  i = (i + 1) * BITS_PER_LONG;
  return i;
}

3.2.4 alloc_fdtable

[-> kernel/fs/file.c]

static struct fdtable * alloc_fdtable(unsigned int nr)
{
  struct fdtable *fdt;
  void *data;

  //保证fd数组大小至少1KB,且fd个数是2的指数次方
  nr /= (1024 / sizeof(struct file *));
  nr = roundup_pow_of_two(nr + 1);
  nr *= (1024 / sizeof(struct file *));

  if (unlikely(nr > sysctl_nr_open))
    nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1;

  //分配内存
  fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL);
  fdt->max_fds = nr;

  data = alloc_fdmem(nr * sizeof(struct file *));
  fdt->fd = data;

  data = alloc_fdmem(max_t(size_t,
         2 * nr / BITS_PER_BYTE + BITBIT_SIZE(nr), L1_CACHE_BYTES));
  fdt->open_fds = data;
  data += nr / BITS_PER_BYTE;
  fdt->close_on_exec = data;
  data += nr / BITS_PER_BYTE;
  fdt->full_fds_bits = data;
  return fdt;

out_arr:
  kvfree(fdt->fd);
out_fdt:
  kfree(fdt);
out:
  return NULL;
}

更新fdt的max_fds,fd,open_fds,close_on_exec,full_fds_bits数据。

3.2.5 copy_fd_bitmaps

[-> file.c]

static void copy_fd_bitmaps(struct fdtable *nfdt, struct fdtable *ofdt, unsigned int count) {
  unsigned int cpy, set;

  cpy = count / BITS_PER_BYTE;
  set = (nfdt->max_fds - count) / BITS_PER_BYTE;
  memcpy(nfdt->open_fds, ofdt->open_fds, cpy);
  memset((char *)nfdt->open_fds + cpy, 0, set);
  memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy);
  memset((char *)nfdt->close_on_exec + cpy, 0, set);

  cpy = BITBIT_SIZE(count);
  set = BITBIT_SIZE(nfdt->max_fds) - cpy;
  memcpy(nfdt->full_fds_bits, ofdt->full_fds_bits, cpy);
  memset((char *)nfdt->full_fds_bits + cpy, 0, set);
}

该方法的功能:将ofdt的成员变量open_fds和close_on_exec以及full_fds_bits数据拷贝到nfdt,没有数据的地方用0填充。

3.3 copy_fs

[-> fork.c]

static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
{
  //结构体【见小节3.3.1】
  struct fs_struct *fs = current->fs;
  if (clone_flags & CLONE_FS) {
    spin_lock(&fs->lock); //获取自旋锁
    if (fs->in_exec) {
      spin_unlock(&fs->lock);
      return -EAGAIN;
    }
    fs->users++; //用户数加1
    spin_unlock(&fs->lock);
    return 0;
  }
  //拷贝fs_struct【见小节3.3.2】
  tsk->fs = copy_fs_struct(fs);
  if (!tsk->fs)
    return -ENOMEM;
  return 0;
}

该方法的功能:

  • 当设置CLONE_FS,且没有执行exec, 则设置用户数加1
  • 当未设置CLONE_FS,则拷贝fs_struct结构体

3.3.1 fs_struct

[-> kernel/include/linux/fs_struct.h]

struct fs_struct {
  int users;
  spinlock_t lock;
  seqcount_t seq;
  int umask;
  int in_exec;
  struct path root, pwd;
};

3.3.2 copy_fs_struct

[-> kernel/fs/fs_struct.c]

struct fs_struct *copy_fs_struct(struct fs_struct *old)
{
  struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
  if (fs) {
    fs->users = 1;
    fs->in_exec = 0;
    spin_lock_init(&fs->lock);
    seqcount_init(&fs->seq);
    fs->umask = old->umask;

    spin_lock(&old->lock);
    fs->root = old->root;
    path_get(&fs->root);
    fs->pwd = old->pwd;
    path_get(&fs->pwd);
    spin_unlock(&old->lock);
  }
  return fs;
}

3.4 copy_sighand

[-> fork.c]

static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
{
  //【见小节3.4.1】
  struct sighand_struct *sig;

  if (clone_flags & CLONE_SIGHAND) {
    atomic_inc(¤t->sighand->count);
    return 0;
  }
  sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  rcu_assign_pointer(tsk->sighand, sig);
  if (!sig)
    return -ENOMEM;

  atomic_set(&sig->count, 1);
  memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  return 0;
}

该方法的功能:

  • 当设置CLONE_SIGHAND, 则增加sighand->count计数
  • 当未设置CLONE_SIGHAND,则创建新的sighand_struct结构体

3.4.1 sighand_struct结构体

[-> kernel/include/linux/sched.h]

struct sighand_struct {
  atomic_t    count; //计数
  struct k_sigaction  action[_NSIG];
  spinlock_t    siglock;
  wait_queue_head_t  signalfd_wqh;
};

3.5 copy_signal

[-> fork.c]

static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
{
  //结构体【见小节3.5.1】
  struct signal_struct *sig;
  //当设置CLONE_THREAD,则直接返回
  if (clone_flags & CLONE_THREAD)
    return 0;

  //创建signal_struct结构体
  sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
  tsk->signal = sig;
  ...

  sig->nr_threads = 1;
  atomic_set(&sig->live, 1);
  atomic_set(&sig->sigcnt, 1);

  sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
  tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);

  init_waitqueue_head(&sig->wait_chldexit);
  sig->curr_target = tsk;
  init_sigpending(&sig->shared_pending);
  INIT_LIST_HEAD(&sig->posix_timers);
  seqlock_init(&sig->stats_lock);
  prev_cputime_init(&sig->prev_cputime);

  hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  sig->real_timer.function = it_real_fn;

  task_lock(current->group_leader);
  memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  task_unlock(current->group_leader);

  posix_cpu_timers_init_group(sig);

  tty_audit_fork(sig);
  sched_autogroup_fork(sig);

  //设置进程adj
  sig->oom_score_adj = current->signal->oom_score_adj;
  sig->oom_score_adj_min = current->signal->oom_score_adj_min;

  sig->has_child_subreaper = current->signal->has_child_subreaper ||
           current->signal->is_child_subreaper;

  mutex_init(&sig->cred_guard_mutex);
  return 0;
}

3.5.1 signal_struct结构体

[-> kernel/include/linux/sched.h]

struct signal_struct {
  atomic_t    sigcnt;
  atomic_t    live;
  int      nr_threads;
  struct list_head  thread_head;

  wait_queue_head_t  wait_chldexit;  //用于wait4()
  struct task_struct  *curr_target; //当前线程组
  struct sigpending  shared_pending; //共享信号处理

  int      group_exit_code; //线程组的退出码
  //当通知完相应进程,则会唤醒group_exit_task进程
  //当分发fatal信号,除了group_exit_task进程之外的都会被停止
  int      notify_count; 
  struct task_struct  *group_exit_task;

  int      group_stop_count;
  unsigned int    flags; //见SIGNAL_*系列

  unsigned int    is_child_subreaper:1;
  unsigned int    has_child_subreaper:1;

  int      posix_timer_id;
  struct list_head  posix_timers;
  struct hrtimer real_timer;
  struct pid *leader_pid;
  ktime_t it_real_incr;

  struct cpu_itimer it[2];
  struct thread_group_cputimer cputimer;
  struct task_cputime cputime_expires;

  struct list_head cpu_timers[3];

  struct pid *tty_old_pgrp;

  int leader; //是否为对话组的领头线程

  struct tty_struct *tty; //当没有tty,则为NULL

  seqlock_t stats_lock;
  cputime_t utime, stime, cutime, cstime;
  cputime_t gtime;
  cputime_t cgtime;
  struct prev_cputime prev_cputime;
  unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
  unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
  unsigned long inblock, oublock, cinblock, coublock;
  unsigned long maxrss, cmaxrss;
  struct task_io_accounting ioac;

  unsigned long long sum_sched_runtime;
  struct rlimit rlim[RLIM_NLIMITS];
  ...

  oom_flags_t oom_flags;
  short oom_score_adj; //OOM killer的adj值
  short oom_score_adj_min;  //OOM killer的最小adj
  struct mutex cred_guard_mutex;
};

signal_struct结构体并没有自己的锁,而是利用sighand_struct lock。

关于进程adj,可查看task->signal->oom_score_adj

3.6 copy_mm

[-> fork.c]

static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
{
  //结构体【见小节3.6.1】
  struct mm_struct *mm, *oldmm;
  int retval;

  tsk->min_flt = tsk->maj_flt = 0;
  tsk->nvcsw = tsk->nivcsw = 0;
#ifdef CONFIG_DETECT_HUNG_TASK
  tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
#endif

  tsk->mm = NULL;
  tsk->active_mm = NULL;

  //对于内核线程mm字段没空,则直接返回
  oldmm = current->mm; 
  if (!oldmm)
    return 0;

  vmacache_flush(tsk); //初始化新的vmacache实体

  if (clone_flags & CLONE_VM) {
    //增加引用计数
    atomic_inc(&oldmm->mm_users);
    mm = oldmm;
    goto good_mm;
  }

  retval = -ENOMEM;
  //拷贝mm信息【见小节3.6.2】
  mm = dup_mm(tsk);
  if (!mm)
    goto fail_nomem;

good_mm:
  tsk->mm = mm; //设置mm字段
  tsk->active_mm = mm;
  return 0;

fail_nomem:
  return retval;
}

该方法说明:

  • 对于内核线程mm字段没空,则直接返回
  • 当设置CLONE_VM,则增加mm_users计数

3.6.1 mm_struct

[-> kernel/include/linux/mm_types.h]

struct mm_struct {
  struct vm_area_struct *mmap;  //VMA列表
  struct rb_root mm_rb;
  u32 vmacache_seqnum;          //每个线程的vma缓存
#ifdef CONFIG_MMU
  unsigned long (*get_unmapped_area) (struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags);
#endif
  unsigned long mmap_base;    //mmap区域
  unsigned long mmap_legacy_base;    //自下而上分配的mmap区域
  unsigned long task_size;    //虚拟地址空间的大小
  unsigned long highest_vm_end;    //高端vma地址
  pgd_t * pgd;
  atomic_t mm_users;      //使用该内存的进程个数
  atomic_t mm_count;      //结构体mm_struct的引用个数
  atomic_long_t nr_ptes;      //PTE页表
#if CONFIG_PGTABLE_LEVELS > 2
  atomic_long_t nr_pmds;      //PMD页表
#endif
  int map_count;        //VMA个数

  spinlock_t page_table_lock;    //用于保活页表和一些计数
  struct rw_semaphore mmap_sem;

  struct list_head mmlist;

  unsigned long hiwater_rss;  //RSS的高水位使用情况
  unsigned long hiwater_vm;  //高水位的虚拟内存使用情况

  unsigned long total_vm;    //页面映射的总数
  unsigned long locked_vm;  //PG_mlocked的页面数
  unsigned long pinned_vm;  //该计数永久增加
  unsigned long shared_vm;  //共享页面数(files)
  unsigned long exec_vm;    // VM_EXEC & ~VM_WRITE
  unsigned long stack_vm;   // VM_GROWSUP/DOWN
  unsigned long def_flags;
  unsigned long start_code, end_code, start_data, end_data;
  unsigned long start_brk, brk, start_stack;
  unsigned long arg_start, arg_end, env_start, env_end;

  unsigned long saved_auxv[AT_VECTOR_SIZE]; //用于/proc/PID/auxv

  struct mm_rss_stat rss_stat; 

  struct linux_binfmt *binfmt;

  cpumask_var_t cpu_vm_mask_var;

  mm_context_t context; //内存上下文

  unsigned long flags; 

  struct core_state *core_state; //支持coredump
#ifdef CONFIG_AIO
  spinlock_t      ioctx_lock;
  struct kioctx_table __rcu  *ioctx_table;
#endif
#ifdef CONFIG_MEMCG
  struct task_struct __rcu *owner;
#endif

  /* store ref to file /proc//exe symlink points to */
  struct file __rcu *exe_file;
#ifdef CONFIG_MMU_NOTIFIER
  struct mmu_notifier_mm *mmu_notifier_mm;
#endif
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
  pgtable_t pmd_huge_pte; /* protected by page_table_lock */
#endif
#ifdef CONFIG_CPUMASK_OFFSTACK
  struct cpumask cpumask_allocation;
#endif
#ifdef CONFIG_NUMA_BALANCING
  /* * numa_next_scan is the next time that the PTEs will be marked * pte_numa. NUMA hinting faults will gather statistics and migrate * pages to new nodes if necessary. */
  unsigned long numa_next_scan;

  /* Restart point for scanning and setting pte_numa */
  unsigned long numa_scan_offset;

  int numa_scan_seq; //用于防止两个线程设置pte_numa
#endif
#if defined(CONFIG_NUMA_BALANCING) || defined(CONFIG_COMPACTION)
  /* * An operation with batched TLB flushing is going on. Anything that * can move process memory needs to flush the TLB when moving a * PROT_NONE or PROT_NUMA mapped page. */
  bool tlb_flush_pending;
#endif
  struct uprobes_state uprobes_state;
#ifdef CONFIG_X86_INTEL_MPX
  void __user *bd_addr; //绑定目录的地址
#endif
#ifdef CONFIG_HUGETLB_PAGE
  atomic_long_t hugetlb_usage;
#endif
};

3.6.2 dup_mm

[-> fork.c]

static struct mm_struct *dup_mm(struct task_struct *tsk)
{
  struct mm_struct *mm, *oldmm = current->mm;
  int err;

  mm = allocate_mm();  //分配内存
  memcpy(mm, oldmm, sizeof(*mm));

  if (!mm_init(mm, tsk))  //初始化mm
    goto fail_nomem;

  err = dup_mmap(mm, oldmm); //拷贝内存信息
  if (err)
    goto free_pt;

  mm->hiwater_rss = get_mm_rss(mm);
  mm->hiwater_vm = mm->total_vm;

  if (mm->binfmt && !try_module_get(mm->binfmt->module))
    goto free_pt;

  return mm;

free_pt:
  mm->binfmt = NULL;
  mmput(mm);

fail_nomem:
  return NULL;
}

进程fork采用COW机制,实现的核心逻辑便在于内存拷贝过程会设置写保护。 具体实现在dup_mmap(),这里暂不展开,后续再专门讲解。

3.7 copy_namespaces

[-> kernel/kernel/nsproxy.c]

int copy_namespaces(unsigned long flags, struct task_struct *tsk)
{
  struct nsproxy *old_ns = tsk->nsproxy;
  struct user_namespace *user_ns = task_cred_xxx(tsk, user_ns);
  struct nsproxy *new_ns;

  //一般情况都是进入该分支
  if (likely(!(flags & (CLONE_NEWNS | CLONE_NEWUTS | CLONE_NEWIPC |
            CLONE_NEWPID | CLONE_NEWNET)))) {
    get_nsproxy(old_ns);
    return 0;
  }

  if (!ns_capable(user_ns, CAP_SYS_ADMIN))
    return -EPERM;

  if ((flags & (CLONE_NEWIPC | CLONE_SYSVSEM)) ==
    (CLONE_NEWIPC | CLONE_SYSVSEM))
    return -EINVAL;

  //创建新的用户空间
  new_ns = create_new_namespaces(flags, tsk, user_ns, tsk->fs);
  ...

  tsk->nsproxy = new_ns;
  return 0;
}

3.7.1 nsproxy结构体

[-> kernel/include/linux/nsproxy.h]

struct nsproxy {
  atomic_t count;
  struct uts_namespace *uts_ns;
  struct ipc_namespace *ipc_ns;
  struct mnt_namespace *mnt_ns;
  struct pid_namespace *pid_ns_for_children;
  struct net        *net_ns;
};

3.8 copy_io

[-> fork.c]

static int copy_io(unsigned long clone_flags, struct task_struct *tsk) {
#ifdef CONFIG_BLOCK
  struct io_context *ioc = current->io_context;
  struct io_context *new_ioc;

  if (!ioc)
    return 0;

  if (clone_flags & CLONE_IO) {
    ioc_task_link(ioc); //nr_tasks加1
    tsk->io_context = ioc;
  } else if (ioprio_valid(ioc->ioprio)) {
    new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
    if (unlikely(!new_ioc))
      return -ENOMEM;

    new_ioc->ioprio = ioc->ioprio;
    put_io_context(new_ioc);
  }
#endif
  return 0;
}

  • 当设置CLONE_IO,则父子进程间共享io context,nr_tasks加1
  • 否则,创建新io_context结构体

3.8.1 io_context

[-> /kernel/include/linux/iocontext.h]

struct io_context {
  atomic_long_t refcount;
  atomic_t active_ref;
  atomic_t nr_tasks; //进程个数

  spinlock_t lock; //下面的成员都由该锁保护

  unsigned short ioprio;

  int nr_batch_requests;     /* Number of requests left in the batch */
  unsigned long last_waited; /* Time last woken after wait for request */

  struct radix_tree_root  icq_tree;
  struct io_cq __rcu  *icq_hint;
  struct hlist_head  icq_list;

  struct work_struct release_work;
};

3.9 copy_thread_tls

[-> /kernel/arch/x86/kernel/process_64.c]

copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);

int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
    unsigned long arg, struct task_struct *p, unsigned long tls)
{
  int err;
  struct pt_regs *childregs;
  struct task_struct *me = current;

  //获取寄存器信息记录到thread_struct结构体
  p->thread.sp0 = (unsigned long)task_stack_page(p) + THREAD_SIZE;
  childregs = task_pt_regs(p);
  p->thread.sp = (unsigned long) childregs;
  set_tsk_thread_flag(p, TIF_FORK);
  p->thread.io_bitmap_ptr = NULL;

  savesegment(gs, p->thread.gsindex);
  p->thread.gs = p->thread.gsindex ? 0 : me->thread.gs;
  savesegment(fs, p->thread.fsindex);
  p->thread.fs = p->thread.fsindex ? 0 : me->thread.fs;
  savesegment(es, p->thread.es);
  savesegment(ds, p->thread.ds);
  memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));

  if (unlikely(p->flags & PF_KTHREAD)) {
    //内核线程
    memset(childregs, 0, sizeof(struct pt_regs));
    childregs->sp = (unsigned long)childregs;
    childregs->ss = __KERNEL_DS;
    childregs->bx = sp; /* function */
    childregs->bp = arg;
    childregs->orig_ax = -1;
    childregs->cs = __KERNEL_CS | get_kernel_rpl();
    childregs->flags = X86_EFLAGS_IF | X86_EFLAGS_FIXED;
    return 0;
  }
  //当前寄存器数据复制给新创建的子进程
  *childregs = *current_pt_regs();
  //子进程eax设置为0,故fork在子进程返回值为0
  childregs->ax = 0;
  if (sp)
    childregs->sp = sp;

  err = -ENOMEM;
  if (unlikely(test_tsk_thread_flag(me, TIF_IO_BITMAP))) {
    p->thread.io_bitmap_ptr = kmemdup(me->thread.io_bitmap_ptr,
              IO_BITMAP_BYTES, GFP_KERNEL);
    if (!p->thread.io_bitmap_ptr) {
      p->thread.io_bitmap_max = 0;
      return -ENOMEM;
    }
    set_tsk_thread_flag(p, TIF_IO_BITMAP);
  }

  //设置新的TLS
  if (clone_flags & CLONE_SETTLS) {
      err = do_arch_prctl(p, ARCH_SET_FS, tls);
    if (err)
      goto out;
  }
  err = 0;
out:
  if (err && p->thread.io_bitmap_ptr) {
    kfree(p->thread.io_bitmap_ptr);
    p->thread.io_bitmap_max = 0;
  }
  return err;
}

设置子进程的寄存器等信息,从父进程拷贝thread_struct的sp0,sp,io_bitmap_ptr等成员变量值。

四. 总结

流程:

do_fork
  _do_fork
    copy_process
        dup_task_struct
        sched_fork
        copy_xxx
        alloc_pid

功能总结:

进程创建的核心实现在于copy_process()方法过程,而copy_process() 的主要实现在于copy_xxx()方法,根据不同的flags来决策采用何种拷贝方式。

  1. 执行dup_task_struct(),拷贝当前进程task_struct
  2. 检查进程数是否超过系统所允许的上限(默认32678)
  3. 执行sched_fork(),设置调度器相关信息,设置task进程状态为TASK_RUNNING,并分配CPU资源
  4. 执行copy_xxx(),拷贝进程的相关资源信息
    • copy_semundo: 当设置CLONE_SYSVSEM,则父子进程间共享SEM_UNDO状态
    • copy_files: 当设置CLONE_FILES,则只增加文件引用计数,不创建新的files_struct
    • copy_fs: 当设置CLONE_FS,且没有执行exec, 则设置用户数加1
    • copy_sighand: 当设置CLONE_SIGHAND, 则增加sighand->count计数
    • copy_signal: 拷贝进程信号
    • copy_mm:当设置CLONE_VM,则增加mm_users计数
    • copy_namespaces:一般情况,不需要创建新用户空间
    • copy_io: 当设置CLONE_IO,则父子进程间共享io context,增加nr_tasks计数
    • copy_thread_tls:设置子进程的寄存器等信息,从父进程拷贝thread_struct的sp0,sp,io_bitmap_ptr等成员变量值
  5. 执行copy_thread_tls(), 拷贝子进程的内核栈信息
  6. 执行alloc_pid(),为新进程分配新pid

你可能感兴趣的:(Linux进程管理(二)--fork)