R语言工具变量与两阶段最小二乘法

原文链接:http://tecdat.cn/?p=5374

我们要估计的模型是

其中​是解释变量,​和​是我们想要估计的系数。 x是控制变量,d是治疗变量。我们对我们治疗d对y的影响特别感兴趣。

生成数据

首先,让我们生成数据。

假设x,d,z(d的工具变量)和e之间的相关矩阵如下:

##       x     d     z     e
## x 1.000 0.001 0.002 0.001
## d 0.001 1.000 0.700 0.300
## z 0.002 0.700 1.000 0.001
## e 0.001 0.300 0.001 1.000

具体而言,相关性表明

  1. cor(d,e)= 0.3,这意味着d是内生的;
  2. cor(d,z)= 0.7,这意味着z是d的强大工具变量;
  3. cor(z,e)= 0.001,这意味着工具变量z满足排除限制,因为它只通过d影响y。

现在,让我们使用指定的相关性为,,和生成数据.xdze

 nvars = dim(U) 1 
numobs = 1000 
 random.normal = matrix(rnorm(nvars*numobs, 0 , nrow=nvars, ncol=numobs);
X = U %*% random.normal
newX = t(X)
data = as.data.frame(newX) 

数据看起来像这样:

##             x          d          z          e
## 1 -0.62645381  0.1830168 -0.4694601  1.7474361
## 2  0.32950777 -0.8201385 -0.2255741  0.2818908
## 3  0.57578135 -0.3048125  0.8670061 -0.1795257
## 4 -0.62124058 -2.2153200 -0.7481687 -1.0350488
## 5 -0.01619026  0.9438195  1.2471197  0.5820200
## 6  0.91897737  0.7830549  0.6025820 -1.5924689

以及数据之间的相关性

##             x          d            z           e
## x  1.00000000 0.00668391 -0.012319595 0.016239235
## d  0.00668391 1.00000000  0.680741763 0.312192680
## z -0.01231960 0.68074176  1.000000000 0.006322354
## e  0.01623923 0.31219268  0.006322354 1.000000000 

正如我们前面所指出的那样。
现在让我们指定真实的数据生成过程并生成已解释变量y

如果我们假装不知道真正的关系,用x和d来解释y,我们对x和d的正确系数应该接近1。否则,我们的结果就错误了。

OLS

如果我们只使用OLS来估计系数:

## 
## Call:
## lm(formula = y ~ x + d)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2395 -0.5952 -0.0308  0.6617  2.7592 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  9.99495    0.03105  321.89   <2e-16 ***
## x            1.01408    0.02992   33.89   <2e-16 ***
## d            1.31356    0.03023   43.46   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.9817 on 997 degrees of freedom
## Multiple R-squared:  0.7541, Adjusted R-squared:  0.7536 
## F-statistic:  1528 on 2 and 997 DF,  p-value: < 2.2e-16

b的估计系数为1.31,而不是1。

2SLS

现在我们使用2SLS来估计关系。我们用z作为d的工具变量

第1阶段:回归x和z上的d,并将d的拟合值保存为d

## 
## Call:
## lm(formula = d ~ x + z)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.59344 -0.52572  0.04978  0.53115  2.01555 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -0.01048    0.02383   -0.44    0.660    
## x            0.01492    0.02296    0.65    0.516    
## z            0.68594    0.02337   29.36   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7534 on 997 degrees of freedom
## Multiple R-squared:  0.4636, Adjusted R-squared:  0.4626 
## F-statistic: 430.9 on 2 and 997 DF,  p-value: < 2.2e-16

第2阶段:在x和d.hat上回归y

## 
## Call:
## lm(formula = y ~ x + d.hat)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -4.4531 -1.0333  0.0228  1.0657  4.0104 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  9.99507    0.04786  208.85   <2e-16 ***
## x            1.01609    0.04612   22.03   <2e-16 ***
## d.hat        1.00963    0.06842   14.76   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.513 on 997 degrees of freedom
## Multiple R-squared:  0.4158, Adjusted R-squared:  0.4146 
## F-statistic: 354.8 on 2 and 997 DF,  p-value: < 2.2e-16

结果

b的真值:1 ,b的OLS估计值:.00963 ,2SLS b的估计值:1.31356
如果治疗变量be是内生的,我们应该为治疗变量找到一个工具变量),并使用2SLS。

非常感谢您阅读本文,有任何问题请在下面留言!


参考文献

1.R语言多元Logistic逻辑回归 应用案例

2.面板平滑转移回归(PSTR)分析案例实现

3.matlab中的偏最小二乘回归(PLSR)和主成分回归(PCR)

4.R语言泊松Poisson回归模型分析案例

5.R语言回归中的Hosmer-Lemeshow拟合优度检验

6.r语言中对LASSO回归,Ridge岭回归和Elastic Net模型实现

7.在R语言中实现Logistic逻辑回归

8.python用线性回归预测股票价格

9.R语言如何在生存分析与Cox回归中计算IDI,NRI指标

你可能感兴趣的:(R语言工具变量与两阶段最小二乘法)