由于热图的需求实在是太过于旺盛,这一节我们继续来通过ggplot2绘制热图,各位看官老爷们,细细品味
喜欢可以关注公众号R语言数据分析指南
,先行拜谢了
pacman::p_load(tidyverse,reshape2,aplot,ggtree)
heatmap <- mtcars %>% scale(center = F) %>%
as.data.frame() %>%
mutate(mtxars=row.names(.)) %>% melt() %>%
ggplot(aes(variable,mtxars,fill=value))+
geom_tile()+
theme_minimal()+
theme(axis.text.x =element_text(angle =90,
hjust =0.5,vjust = 0.5))+
scale_fill_gradientn(colours =rainbow(3))+
scale_y_discrete(position="right")+
xlab(NULL) + ylab(NULL)
scale
函数对数据进行标准化时会同时进行标准化
与中心化
,设置center = F,
标准化后的数据类型则变为矩阵与数组
,as.data.frame()
将其转化为数据框,mutate
添加行名,melt
将宽表转为长表
group <- colnames(mtcars) %>% as.data.frame() %>%
mutate(group=rep(LETTERS[1:2],times=c(6, 5))) %>%
mutate(p="group") %>%
ggplot(aes(.,y=p,fill=group))+
geom_tile() +
scale_y_discrete(position="right") +
theme_minimal()+xlab(NULL) + ylab(NULL) +
theme(axis.text.x = element_blank())+
labs(fill = "Group")
type <- rownames(mtcars) %>% as.data.frame() %>%
mutate(group=rep(c("gene1","gene2","gene3"),
times=c(10,12,10))) %>%
mutate(p="genetype") %>%
ggplot(aes(p,.,fill=group))+
geom_tile() +
scale_y_discrete(position="right") +
theme_minimal()+xlab(NULL) + ylab(NULL) +
theme(axis.text.y = element_blank(),
axis.text.x =element_text(
angle =90,hjust =0.5,vjust = 0.5))+
labs(fill = "Type")
绘制聚类树
p <- mtcars %>% scale(center = F) %>% as.data.frame()
phr <- hclust(dist(p)) %>%
ggtree(layout="rectangular",branch.length="none")
phc <- hclust(dist(t(p))) %>%
ggtree() + layout_dendrogram()
aplot包对5组图进行拼图
heatmap %>%
insert_left(type, width=.05) %>%
insert_left(phr, width=.2) %>%
insert_top(group, height=.05) %>%
insert_top(phc, height=.1)
参考: https://mp.weixin.qq.com/s/PioLhBKBP4X8RhJzscrQTQ