找工作要做好分析准备,几行Python代码爬取3000+ 上市公司的信息

前言

入门爬虫很容易,几行代码就可以,可以说是学习 Python 最简单的途径。

学习Python中有不明白推荐加入交流群

            号:960410445
            群里有志同道合的小伙伴,互帮互助,
            群里有不错的视频学习教程和PDF!

刚开始动手写爬虫,你只需要关注最核心的部分,也就是先成功抓到数据,其他的诸如:下载速度、存储方式、代码条理性等先不管,这样的代码简短易懂、容易上手,能够增强信心。

基本环境配置

版本:Python3

系统:Windows

相关模块:pandas、csv

爬取目标网站

找工作要做好分析准备,几行Python代码爬取3000+ 上市公司的信息_第1张图片
image

实现代码

import pandas as pdimport csvfor i in range(1,178):  # 爬取全部页    tb = pd.read_html('http://s.askci.com/stock/a/?reportTime=2017-12-31&pageNum=%s' % (str(i)))[3]     tb.to_csv(r'1.csv', mode='a', encoding='utf_8_sig', header=1, index=0)

3000+ 上市公司的信息,安安静静地躺在 Excel 中:

找工作要做好分析准备,几行Python代码爬取3000+ 上市公司的信息_第2张图片
image

有了上面的信心后,我开始继续完善代码,因为 5 行代码太单薄,功能也太简单,大致从以下几个方面进行了完善:

增加异常处理

由于爬取上百页的网页,中途很可能由于各种问题导致爬取失败,所以增加了 try except 、if 等语句,来处理可能出现的异常,让代码更健壮。

增加代码灵活性

初版代码由于固定了 URL 参数,所以只能爬取固定的内容,但是人的想法是多变的,一会儿想爬这个一会儿可能又需要那个,所以可以通过修改 URL 请求参数,来增加代码灵活性,从而爬取更灵活的数据。
修改存储方式

初版代码我选择了存储到 Excel 这种最为熟悉简单的方式,人是一种惰性动物,很难离开自己的舒适区。但是为了学习新知识,所以我选择将数据存储到 MySQL 中,以便练习 MySQL 的使用。

加快爬取速度

初版代码使用了最简单的单进程爬取方式,爬取速度比较慢,考虑到网页数量比较大,所以修改为了多进程的爬取方式。

经过以上这几点的完善,代码量从原先的 5 行增加到了下面的几十行:

import requestsimport pandas as pdfrom bs4 import BeautifulSoupfrom lxml import etreeimport timeimport pymysqlfrom sqlalchemy import create_enginefrom urllib.parse import urlencode  # 编码 URL 字符串start_time = time.time()  #计算程序运行时间def get_one_page(i):    try:        headers = {            'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/66.0.3359.181 Safari/537.36'        }        paras = {        'reportTime': '2017-12-31',        #可以改报告日期,比如2018-6-30获得的就是该季度的信息        'pageNum': i   #页码        }        url = 'http://s.askci.com/stock/a/?' + urlencode(paras)        response = requests.get(url,headers = headers)        if response.status_code == 200:            return response.text        return None    except RequestException:        print('爬取失败')def parse_one_page(html):    soup = BeautifulSoup(html,'lxml')    content = soup.select('#myTable04')[0] #[0]将返回的list改为bs4类型    tbl = pd.read_html(content.prettify(),header = 0)[0]    # prettify()优化代码,[0]从pd.read_html返回的list中提取出DataFrame    tbl.rename(columns = {'序号':'serial_number', '股票代码':'stock_code', '股票简称':'stock_abbre', '公司名称':'company_name', '省份':'province', '城市':'city', '主营业务收入(201712)':'main_bussiness_income', '净利润(201712)':'net_profit', '员工人数':'employees', '上市日期':'listing_date', '招股书':'zhaogushu', '公司财报':'financial_report', '行业分类':'industry_classification', '产品类型':'industry_type', '主营业务':'main_business'},inplace = True)    return tbldef generate_mysql():    conn = pymysql.connect(        host='localhost',        user='root',        password='******',        port=3306,        charset = 'utf8',          db = 'wade')    cursor = conn.cursor()    sql = 'CREATE TABLE IF NOT EXISTS listed_company (serial_number INT(20) NOT NULL,stock_code INT(20) ,stock_abbre VARCHAR(20) ,company_name VARCHAR(20) ,province VARCHAR(20) ,city VARCHAR(20) ,main_bussiness_income VARCHAR(20) ,net_profit VARCHAR(20) ,employees INT(20) ,listing_date DATETIME(0) ,zhaogushu VARCHAR(20) ,financial_report VARCHAR(20) , industry_classification VARCHAR(20) ,industry_type VARCHAR(100) ,main_business VARCHAR(200) ,PRIMARY KEY (serial_number))'    cursor.execute(sql)    conn.close()def write_to_sql(tbl, db = 'wade'):    engine = create_engine('mysql+pymysql://root:******@localhost:3306/{0}?charset=utf8'.format(db))    try:        tbl.to_sql('listed_company2',con = engine,if_exists='append',index=False)        # append表示在原有表基础上增加,但该表要有表头    except Exception as e:        print(e)def main(page):    generate_mysql()    for i in range(1,page):          html = get_one_page(i)        tbl = parse_one_page(html)        write_to_sql(tbl)# # 单进程if __name__ == '__main__':        main(178)    endtime = time.time()-start_time    print('程序运行了%.2f秒' %endtime)# 多进程from multiprocessing import Poolif __name__ == '__main__':     pool = Pool(4)     pool.map(main, [i for i in range(1,178)])  #共有178页    endtime = time.time()-start_time    print('程序运行了%.2f秒' %(time.time()-start_time))

)结语

这个过程觉得很自然,因为每次修改都是针对一个小点,一点点去学,搞懂后添加进来,而如果让你上来就直接写出这几十行的代码,你很可能就放弃了。

所以,你可以看到,入门爬虫是有套路的,最重要的是给自己信心。

你可能感兴趣的:(找工作要做好分析准备,几行Python代码爬取3000+ 上市公司的信息)