索引是一种排好序的快速查找的数据结构,它帮助数据库高效的进行数据的检索。在数据之外,数据库系统还维护着满足特定查找算法的数据结构(额外的存储空间),这些数据结构以某种方式指向数据,这样就可以在这些数据结构上实现高效的查找算法。这种数据结构就叫做索引。
一般来说索引本身也很大,不可能全部存储在内存中,因此往往以索引文件的形式存放在磁盘中。目前大多数索引都采用BTree树方式构建。
在Mysql建立复合索引时有最左前缀的原则。当建立一个复合索引(col1,col2,col3)时,实际上建立了三个索引,即(col1)、(col1,col2)、(col1,col2,col3)。
复合索引的结构是B+树,比如(name,age,sex)的时候,b+树是按照从左到右的顺序来建立搜索树的,b+树会优先比较name来确定下一步的所搜方向,如果name相同再依次比较age和sex。当age或者sex字段缺失时,b+树就不知道第一步该查哪个节点,所以只能把名字name的数据都找到,即索引的最左匹配特性。
type:
性能排行:
System > const > eq_ref > ref > range > index > ALL
possible_keys:
key:
优点:
缺点:
真实的数据仅在叶子节点中: 3, 5, 9, 10, 13, 15, 28, 29, 36, 60, 75, 79, 90,99
查找过程: 假如要找29
创建索引:
不创建索引:
从Mysql(InnoDB)的角度来看,B+树是用来充当索引的,一般来说索引非常大,尤其是关系性数据库这种数据量大的索引能达到亿级别,所以为了减少内存的占用,索引也会被存储在磁盘上。
那么Mysql如何衡量查询效率呢?磁盘IO次数。B-树/B+树的特点就是每层节点数目非常多,层数很少,目的就是为了就少磁盘IO次数,但是B-树的每个节点都有data域(指针),这无疑增大了节点大小,说白了增加了磁盘IO次数(磁盘IO一次读出的数据量大小是固定的,单个数据变大,每次读出的就少,IO次数增多,一次IO多耗时),而B+树除了叶子节点其它节点并不存储数据,节点小,磁盘IO次数就少。这是优点之一。
另一个优点是:B+树所有的Data域在叶子节点,一般来说都会进行一个优化,就是将所有的叶子节点用指针串起来。这样遍历叶子节点就能获得全部数据,这样就能进行区间访问。在数据库中基于范围的查询是非常频繁的,而B树不支持这样的遍历操作。
平衡二叉树AVL 和红黑树基本都是存储在内存中才会使用的数据结构。在大规模数据存储的时候,红黑树往往出现由于树的深度过大而造成磁盘IO读写过于频繁,进而导致效率低下的情况。为什么会出现这样的情况,我们知道要获取磁盘上数据,必须先通过磁盘移动臂移动到数据所在的柱面,然后找到指定盘面,接着旋转盘面找到数据所在的磁道,最后对数据进行读写。磁盘IO代价主要花费在查找所需的柱面上,树的深度过大会造成磁盘IO频繁读写。根据磁盘查找存取的次数往往由树的高度所决定,所以,只要我们通过某种较好的树结构减少树的结构尽量减少树的高度,B树可以有多个子女,从几十到上千,可以降低树的高度。
同时,数据库系统的设计者巧妙利用了磁盘预读原理,将一个节点的大小设为等于一个页,这样每个节点只需要一次I/O就可以完全载入。为了达到这个目的,在实际实现B-Tree还需要使用如下技巧:每次新建节点时,直接申请一个页的空间,这样就保证一个节点物理上也存储在一个页里,加之计算机存储分配都是按页对齐的,就实现了一个node只需一次I/O。
3层的BTree可以表示上百万的数据,如果上百万条数据,查找只需要三次IO,性能提高将是巨大的,如果没有索引每次查找都要发生一次IO,那么总共就需要百万次的IO,显然成本是非常高的。