LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子;它具有旋转不变性和灰度不变性等显著的优点。它是首先由T. Ojala, M.Pietikäinen, 和D. Harwood 在1994年提出,用于纹理特征提取。而且,提取的特征是图像的局部的纹理特征;
原始的LBP算子定义为在3*3的窗口内,以窗口中心像素为阈值,将相邻的8个像素的灰度值与其进行比较,若周围像素值大于中心像素值,则该像素点的位置被标记为1,否则为0。这样,3*3邻域内的8个点经比较可产生8位二进制数(通常转换为十进制数即LBP码,共256种),即得到该窗口中心像素点的LBP值,并用这个值来反映该区域的纹理信息。如下图所示:
原始的LBP提出后,研究人员不断对其提出了各种改进和优化。
基本的 LBP 算子的最大缺陷在于它只覆盖了一个固定半径范围内的小区域,这显然不能满足不同尺寸和频率纹理的需要。为了适应不同尺度的纹理特征,并达到灰度和旋转不变性的要求,Ojala 等对 LBP 算子进行了改进,将 3×3 邻域扩展到任意邻域,并用圆形邻域代替了正方形邻域,改进后的 LBP 算子允许在半径为 R 的圆形邻域内有任意多个像素点。从而得到了诸如半径为R的圆形区域内含有P个采样点的LBP算子;
从 LBP 的定义可以看出,LBP 算子是灰度不变的,但却不是旋转不变的。图像的旋转就会得到不同的 LBP值。
Maenpaa等人又将 LBP 算子进行了扩展,提出了具有旋转不变性的 LBP 算子,即不断旋转圆形邻域得到一系列初始定义的 LBP 值,取其最小值作为该邻域的 LBP 值。
图 2.5 给出了求取旋转不变的 LBP 的过程示意图,图中算子下方的数字表示该算子对应的 LBP 值,图中所示的 8 种 LBP模式,经过旋转不变的处理,最终得到的具有旋转不变性的 LBP 值为 15。也就是说,图中的 8 种 LBP 模式对应的旋转不变的 LBP 模式都是00001111。
一个LBP算子可以产生不同的二进制模式,对于半径为R的圆形区域内含有P个采样点的LBP算子将会产生2P2P种模式。很显然,随着邻域集内采样点数的增加,二进制模式的种类是急剧增加的。例如:5×5邻域内20个采样点,有220220=1,048,576种二进制模式。如此多的二值模式无论对于纹理的提取还是对于纹理的识别、分类及信息的存取都是不利的。同时,过多的模式种类对于纹理的表达是不利的。例如,将LBP算子用于纹理分类或人脸识别时,常采用LBP模式的统计直方图来表达图像的信息,而较多的模式种类将使得数据量过大,且直方图过于稀疏。因此,需要对原始的LBP模式进行降维,使得数据量减少的情况下能最好的代表图像的信息。
为了解决二进制模式过多的问题,提高统计性,Ojala提出了采用一种“等价模式”(Uniform Pattern)来对LBP算子的模式种类进行降维。Ojala等认为,在实际图像中,绝大多数LBP模式最多只包含两次从1到0或从0到1的跳变。因此,Ojala将“等价模式”定义为:当某个LBP所对应的循环二进制数从0到1或从1到0最多有两次跳变时,该LBP所对应的二进制就称为一个等价模式类。如00000000(0次跳变),00000111(只含一次从0到1的跳变),10001111(先由1跳到0,再由0跳到1,共两次跳变)都是等价模式类。除等价模式类以外的模式都归为另一类,称为混合模式类,例如10010111(共四次跳变)(这是我的个人理解,不知道对不对)。
通过这样的改进,二进制模式的种类大大减少,而不会丢失任何信息。模式数量由原来的2P2P种减少为 P ( P-1)+2种,其中P表示邻域集内的采样点数。对于3×3邻域内8个采样点来说,二进制模式由原始的256种减少为58种,这使得特征向量的维数更少,并且可以减少高频噪声带来的影响。
显而易见的是,上述提取的LBP算子在每个像素点都可以得到一个LBP“编码”,那么,对一幅图像(记录的是每个像素点的灰度值)提取其原始的LBP算子之后,得到的原始LBP特征依然是“一幅图片”(记录的是每个像素点的LBP值)。
从上图可以看出LBP对光照具有很强的鲁棒性
LBP的应用中,如纹理分类、人脸分析等,一般都不将LBP图谱作为特征向量用于分类识别,而是采用LBP特征谱的统计直方图作为特征向量用于分类识别。
因为,从上面的分析我们可以看出,这个“特征”跟位置信息是紧密相关的。直接对两幅图片提取这种“特征”,并进行判别分析的话,会因为“位置没有对准”而产生很大的误差。后来,研究人员发现,可以将一幅图片划分为若干的子区域,对每个子区域内的每个像素点都提取LBP特征,然后,在每个子区域内建立LBP特征的统计直方图。如此一来,每个子区域,就可以用一个统计直方图来进行描述;整个图片就由若干个统计直方图组成;
例如:一幅100*100像素大小的图片,划分为10*10=100个子区域(可以通过多种方式来划分区域),每个子区域的大小为10*10像素;在每个子区域内的每个像素点,提取其LBP特征,然后,建立统计直方图;这样,这幅图片就有10*10个子区域,也就有了10*10个统计直方图,利用这10*10个统计直方图,就可以描述这幅图片了。之后,我们利用各种相似性度量函数,就可以判断两幅图像之间的相似性了;
(1)首先将检测窗口划分为16×16的小区域(cell);
(2)对于每个cell中的一个像素,将相邻的8个像素的灰度值与其进行比较,若周围像素值大于中心像素值,则该像素点的位置被标记为1,否则为0。这样,3*3邻域内的8个点经比较可产生8位二进制数,即得到该窗口中心像素点的LBP值;
(3)然后计算每个cell的直方图,即每个数字(假定是十进制数LBP值)出现的频率;然后对该直方图进行归一化处理。
(4)最后将得到的每个cell的统计直方图进行连接成为一个特征向量,也就是整幅图的LBP纹理特征向量;
然后便可利用SVM或者其他机器学习算法进行分类了。
LPQ(Local Phase Quantization)算法的原理是假设平滑函数h(x)中心对称,则其傅里叶变换为H(u),对所有H(u)≥0有∠G(u)= ∠F(u),其中F(u)和G(u)分别为原图像和平滑后图像的傅里叶变换,因而在H(u)≥0条件下,图像对平滑有不变性。
为使H(u)≥0,a取为不超过第一个过零点的频率点,其值为a=1/winSize(winSize为输入参数)。分别用f(x)对u1=(a,0),u2=(0,a),u3=(a,a),u4=(a,-a)四个点作STFT,然后分别把四个点的实部和虚部分开,形成一个向量W=[Re{F(u1,x)},Re{F(u2,x)},Re{F(u3,x)},Re{F(u4,x)},Im{F(u1,x)},Im{F(u2,x)},Im{F(u3,x)},Im{F(u4,x)}]T 。
最终得到LPQ变换即为Fx=W*fx。然后对参数进行统计分析,若参数是相关的,则用奇异值分解去相关并且量化。
%日期:2013/7/3
%首先对jaffe表情图片进行LPB+LPQ特征提取,最后放入支持向量机中分类训练,统计出训练和测试的精度
clc
clear
c=[];
addpath train;
addpath test;
mapping=getmapping(8,'u2');%LBP映射
W=[2,1,1,1,1,1,2; ...
2,4,4,1,4,4,2; ...
1,1,1,0,1,1,1; ...
0,1,1,0,1,1,0; ...
0,1,1,1,1,1,0; ...
0,1,1,2,1,1,0; ...
0,1,1,1,1,1,0];
%提取SU表情的特征
for i=1:20
B=imread(strcat('train\','SU\',num2str(i),'.tiff')); %读取SU类别的表情照片
X = double(B);
X = imresize(X,[128 128],'bilinear'); %采用'bilinear':采用双线性插值算法扩展为128*128
H2=DSLBP(X,mapping,W);%提取图片的LBP直方图
Gray=X;
Gray=(Gray-mean(Gray(:)))/std(Gray(:))*20+128;
lpqhist=lpq(Gray,3,1,1,'nh'); %计算每个照片lpq直方图
a=[H2,lpqhist];
c=[c;a];%LPB和LPQ特征融合
disp(sprintf('完成SU表情第%i张图片的特征提取',i));
end
%%%以下注释一样
%提取SA表情的特征
for i=1:21
B=imread(strcat('train\','SA\',num2str(i),'.tiff'));
X = double(B);
X = imresize(X,[128 128],'bilinear'); %采用'bilinear':采用双线性插值算法扩展为128*128
H2=DSLBP(X,mapping,W);%提取图片的LBP直方图
Gray=X;
Gray=(Gray-mean(Gray(:)))/std(Gray(:))*20+128;
lpqhist=lpq(Gray,3,1,1,'nh'); %计算每个照片lpq直方图
a=[H2,lpqhist];
c=[c;a];%LPB和LPQ特征融合
disp(sprintf('完成SA表情第%i张图片的特征提取',i));
end
%提取NE表情的特征
for i=1:20
B=imread(strcat('train\','NE\',num2str(i),'.tiff'));
X = double(B);
X = imresize(X,[128 128],'bilinear'); %采用'bilinear':采用双线性插值算法扩展为128*128
H2=DSLBP(X,mapping,W);%提取图片的LBP直方图
Gray=X;
Gray=(Gray-mean(Gray(:)))/std(Gray(:))*20+128;
lpqhist=lpq(Gray,3,1,1,'nh'); %计算每个照片lpq直方图
a=[H2,lpqhist];
c=[c;a];
disp(sprintf('完成NE表情第%i张图片的小波特征提取',i));
end
for i=1:22
B=imread(strcat('train\','HA\',num2str(i),'.tiff'));
X = double(B);
X = imresize(X,[128 128],'bilinear'); %采用'bilinear':采用双线性插值算法扩展为128*128
H2=DSLBP(X,mapping,W);%提取图片的LBP直方图
Gray=X;
Gray=(Gray-mean(Gray(:)))/std(Gray(:))*20+128;
lpqhist=lpq(Gray,3,1,1,'nh'); %计算每个照片lpq直方图
a=[H2,lpqhist];
c=[c;a];%LPB和LPQ特征融合
disp(sprintf('完成HA表情第%i张图片的小波特征提取',i));
end
for i=1:22
B=imread(strcat('train\','FE\',num2str(i),'.tiff'));
X = double(B);
X = imresize(X,[128 128],'bilinear'); %采用'bilinear':采用双线性插值算法扩展为128*128
H2=DSLBP(X,mapping,W);%提取图片的LBP直方图
Gray=X;
Gray=(Gray-mean(Gray(:)))/std(Gray(:))*20+128;
lpqhist=lpq(Gray,3,1,1,'nh'); %计算每个照片lpq直方图
a=[H2,lpqhist];
c=[c;a];
disp(sprintf('完成FE表情第%i张图片的小波特征提取',i));
end
for i=1:19
B=imread(strcat('train\','DI\',num2str(i),'.tiff'));
X = double(B);
X = imresize(X,[128 128],'bilinear'); %采用'bilinear':采用双线性插值算法扩展为128*128
H2=DSLBP(X,mapping,W);%提取图片的LBP直方图
Gray=X;
Gray=(Gray-mean(Gray(:)))/std(Gray(:))*20+128;
lpqhist=lpq(Gray,3,1,1,'nh'); %计算每个照片lpq直方图
a=[H2,lpqhist];
c=[c;a];
disp(sprintf('完成DI表情第%i张图片的小波特征提取',i));
end
for i=1:20
B=imread(strcat('train\','AN\',num2str(i),'.tiff'));
X = double(B);
X = imresize(X,[128 128],'bilinear'); %采用'bilinear':采用双线性插值算法扩展为128*128
H2=DSLBP(X,mapping,W);%提取图片的LBP直方图
Gray=X;
Gray=(Gray-mean(Gray(:)))/std(Gray(:))*20+128;
lpqhist=lpq(Gray,3,1,1,'nh'); %计算每个照片lpq直方图
a=[H2,lpqhist];
c=[c;a];
disp(sprintf('完成AN表情第%i张图片的小波特征提取',i));
end
d=[];
for i=1:10
B=imread(strcat('test\','SU\',num2str(i),'.tiff'));
X = double(B);
X = imresize(X,[128 128],'bilinear'); %采用'bilinear':采用双线性插值算法扩展为128*128
H2=DSLBP(X,mapping,W);%提取图片的LBP直方图
Gray=X;
Gray=(Gray-mean(Gray(:)))/std(Gray(:))*20+128;
lpqhist=lpq(Gray,3,1,1,'nh'); %计算每个照片lpq直方图
a=[H2,lpqhist];
d=[d;a];
disp(sprintf('完成SU表情测试集第%i张图片的小波特征提取',i));
end
verbose = 0;
nbclass=7;
[xsup,w,b,nbsv]=svmmulticlassoneagainstall(P_train,train_label,nbclass,c,lambda,kernel,kerneloption,verbose); %使用支持向量机进行训练获得支持向量
[ypred1,maxi] = svmmultival(P_train,xsup,w,b,nbsv,kernel,kerneloption); %训练集测试
[ypred2,maxi] = svmmultival(P_test,xsup,w,b,nbsv,kernel,kerneloption); %测试集测试
CC1=ypred1-train_label;
n1=length(find(CC1==0));
CC2=ypred2-test_label;
n2=length(find(CC2==0));
Accuracytrain=n1/size(train_label,1) %统计训练精度
Accuracytest=n2/size(test_label,1) %统计测试精度
完整代码或者代写添加QQ1575304183
【图像识别】国外车牌识别matlab源码
【图像识别】基于cnn卷积神经网络之验证码识别matlab源码
【图像识别】基于svm植物叶子疾病检测和分类matlab源码
【图像识别】路面裂缝识别含GUI源码matlab源码
【图像识别】基于RGB和BP神经网络的人民币识别系统含GUI界面matlab源码
【图像识别】条形码识别系统matlab源码
【图像识别】基于不变矩的数字验证码识别含GUI界面matlab源码
【图像识别】基于模板匹配之手写数字识别系统GUI界面matlab源码
【图像识别】基于贝叶斯分类器之目标识别matlab源码
【图像识别】身份证号码识别matlab源码
【图像识别】条形码识别系统matlab源码
【模式识别】基于特征匹配的英文印刷字符识别matlab源码
【图像分类】基于极限学习分类器对遥感图像分类matlab源码
【图像识别】基于BP神经网络之字母识别matlab源码
【图像特征处理】指纹图像细节特征提取matlab源码
【图像识别】基于反馈神经Hopfield的数字识别matlab源码
【图像识别】基于二值膨胀差分和椒盐滤波之教室内人数识别系统matlab源码
【图像识别】火灾检测matlab源码GUI
【模式识别】基于 Hough变换视频车道线检测matlab源码
【模式识别】基于matlab Hough变换图片车道线检测
【模式识别】基于差影法之三维人体姿态行为识别matlab源码
【模式识别】指针式表盘识别matlab源码
【图像识别】表情检测matlab源码
【图像检测】基于LSD直线检测matlab源码
【图像识别】基于帧差法跌倒检测matlab源码
【图像融合】红外与可见光的融合与配准算法matlab源码
【图像识别】基于组合BCOSFIRE过滤器进行墙体裂缝识别matlab源码
【图像边缘检测】基于插值法亚像素边缘检测matlab源码
【模式识别】基于贝叶斯最小错误率手写数字识别matlab 源码
【模式识别】基于PCA手写数字识别matlab 源码
【模式识别】基于模板匹配的手写体数字识别matlab源码
【图像识别】基于模板匹配车牌识别matlab源码含GUI
【图像识别】基于模板匹配之人脸表情识别matlab源码含GUI