R可视化:使用EnhancedVolcano包可视化火山图

使用EnhancedVolcano包可视化火山图

火山图是用来展示差异表达的基因或者物种,其常常出现RNA-seq,amplicon-seq分析的结果中。其主要根据差异分析结果的p值和Fold change值进行展示结果。更多知识分享请到 https://zouhua.top/

介绍

标准的火山图常用来展示差异分析的结果,它具有两个指标:

  • 差异表达的显著性值:p值或基于p值得adjust-P(差异分析过程涉及到多重校验,因此要对多次检验的p进行校正,校正的方法一般有FDR, BH等等);
  • 差异表达程度值:Fold change值也即使倍数变化值;

数据

Deseq2的结果数据。

  • 箭头指向的红框是组间比较,根据Fold changes值设置富集方向,并在图中表示出来;
  • DataFrame的红框部分是火山图的坐标轴,FoldChange是x轴,padjy轴(可以对其取);
R可视化:使用EnhancedVolcano包可视化火山图_第1张图片

实操

  • 读取数据:

    library(dplyr)
    library(tibble)
    library(ggplot2)
    library(EnhancedVolcano)
    
    # pre-run : save(miRNA_Deseq2, file="../../Result/Differential_expression/RNA_DEseq2.RData")
    
    load("../../Result/Differential_expression/RNA_DEseq2.RData")
    
  • 画图函数:

    • 设置富集方向标签;

    • 设置差异RNA的名称;

      Volcanofun <- function(prof, type="miRNA", FDR=0.05, lgFC=2){
        # prof <- miRNA.des2
        # type <- "miRNA"
        # FDR <- 0.05
        # lgFC <- 2
      
        geneid2symbolfun <- function(diff_data){
          require(biomaRt)
          require(curl)
          mart <- useDataset("hsapiens_gene_ensembl", useMart("ensembl"))
          # origin 
          ensembl_gene_id <- rownames(diff_data)
          if(!file.exists("../../Result/Differential_expression/geneid2symbol.csv")){
            gene_symbols <- getBM(attributes=c('ensembl_gene_id','external_gene_name',
                                               "transcript_biotype","description"),
                                                filters='ensembl_gene_id',
                                                values=ensembl_gene_id, mart = mart) 
            write.csv(gene_symbols, "../../Result/Differential_expression/geneid2symbol.csv", row.names = F)
          }else{
            gene_symbols <- fread("../../Result/Differential_expression/geneid2symbol.csv")
          }
          
          return(gene_symbols)
        }
          
        if(type == "miRNA"){
          dat <- prof
          label <- rownames(dat)
        }else{
          gene_symbols <- geneid2symbolfun(prof)
          dat_cln <- gene_symbols %>% filter(transcript_biotype == type)
          dat <- subset(prof, rownames(prof)%in%dat_cln$ensembl_gene_id)
          label <- NA
        }
        
        # over- or under- represent RNA
        keyvals <- ifelse(
          dat$log2FoldChange < -lgFC, 'royalblue',
            ifelse(dat$log2FoldChange > lgFC, 'gold',
              'black'))
        names(keyvals)[keyvals == 'gold'] <- 'high'
        names(keyvals)[keyvals == 'black'] <- 'mid'
        names(keyvals)[keyvals == 'royalblue'] <- 'low'
        
        pl <- EnhancedVolcano(dat,
          lab = label,                                  # 显示差异RNA
          x = 'log2FoldChange',                         
          y = 'padj',
          xlim = c(-4, 4),
          ylim = c(-10, 50),
          xlab = bquote(~Log[2]~ 'fold change'),
          ylab = bquote(~-Log[10]~ adjusted~italic(P)),
          title = paste('RB versus PB', "in", type),
          pCutoff = FDR,                                
          FCcutoff = lgFC,
          pointSize = 2.0,
          labSize = 4.0,
          col = c('black', 'black', 'black', 'red3'),
          shape = 16,
          colAlpha = 1,
          drawConnectors = TRUE,
          legendLabSize = 16,
          legendIconSize = 5.0,
          selectLab = rownames(dat)[which(names(keyvals) %in% c('high', 'low'))],
          colCustom = keyvals)+
          scale_x_continuous(breaks = seq(-4, 4, 1),
                             limits = c(-4.5, 4.5))+
          scale_y_continuous(breaks = seq(-5, 40, 5),
                             limits = c(-6, 46))+
          theme_bw()+
          theme(plot.title = element_text(hjust = .5, size = 14))
        
        return(pl)
      }
      
    • Run结果:

      # miRNA
      Volcanofun(miRNA.des2, type="miRNA")
      
      # lncRNA
      Volcanofun(RNA.des2, type="lncRNA")
      
R可视化:使用EnhancedVolcano包可视化火山图_第2张图片

参考

  1. EnhancedVolcano;
  2. Color points by label
  3. 火山图含义

参考文章如引起任何侵权问题,可以与我联系,谢谢。

你可能感兴趣的:(R可视化:使用EnhancedVolcano包可视化火山图)