为什么需要卷积神经网络
应用计算机视觉时要面临的一个挑战是数据的输入可能会非常大。例如一张 1000x1000x3 的图片,神经网络输入层的维度将高达三百万,使得网络权重 W 非常庞大。这样会造成两个后果:
神经网络结构复杂,数据量相对较少,容易出现过拟合;
所需内存和计算量巨大。
因此,一般的神经网络很难处理蕴含着大量数据的图像。解决这一问题的方法就是使用卷积神经网络
什么是卷积
我们之前提到过,神经网络由浅层到深层,分别可以检测出图片的边缘特征、局部特征(例如眼睛、鼻子等),到最后面的一层就可以根据前面检测的特征来识别整体面部轮廓。这些工作都是依托卷积神经网络来实现的。
卷积运算(Convolutional Operation)是卷积神经网络最基本的组成部分。我们以边缘检测为例,来解释卷积是怎样运算的。
图片最常做的边缘检测有两类:垂直边缘(Vertical Edges)检测和水平边缘(Horizontal Edges)检测。
比如检测一张6x6像素的灰度图片的vertical edge,设计一个3x3的矩阵(称之为filter或kernel),让原始图片和filter矩阵做卷积运算(convolution),得到一个4x4的图片。 具体的做法是,将filter矩阵贴到原始矩阵上(从左到右从上到下),依次可以贴出4x4种情况。让原始矩阵与filter重合的部分做element wise的乘积运算再求和,所得的值作为4x4矩阵对应元素的值。如下图是第一个元素的计算方法,以此类推。
可以看到,卷积运算的求解过程是从左到右,由上到下,每次在原始图片矩阵中取与滤波器同等大小的一部分,每一部分中的值与滤波器中的值对应相乘后求和,将结果组成一个矩阵。
下图对应一个垂直边缘检测的例子:
如果将最右边的矩阵当作图像,那么中间一段亮一些的区域对应最左边的图像中间的垂直边缘。
卷积如何起作用的
下图3x3滤波器,通常称为垂直索伯滤波器(Sobel filter):
看看用它来处理知名的Lena照片会得到什么:
现在可以解释卷积操作的用处了:用输出图像中更亮的像素表示原始图像中存在的边缘。
你能看出为什么边缘检测图像可能比原始图像更有用吗?
回想一下MNIST手写数字分类问题。在MNIST上训练的CNN可以找到某个特定的数字。比如发现数字1,可以通过使用边缘检测发现图像上两个突出的垂直边缘。
通常,卷积有助于我们找到特定的局部图像特征(如边缘),用在后面的网络中。
填充
假设输入图片的大小为 n×n,而滤波器的大小为 f×f,则卷积后的输出图片大小为 (n−f+1)×(n−f+1)。
这样就有两个问题:
- 每次卷积运算后,输出图片的尺寸缩小;
- 原始图片的角落、边缘区像素点在输出中采用较少,输出图片丢失边缘位置的很多信息。
为了解决这些问题,可以在进行卷积操作前,对原始图片在边界上进行填充(Padding),以增加矩阵的大小。通常将 0 作为填充值。
设每个方向扩展像素点数量为 p,则填充后原始图片的大小为 (n+2p)×(n+2p),滤波器大小保持 f×f不变,则输出图片大小为 (n+2p−f+1)×(n+2p−f+1)。
因此,在进行卷积运算时,我们有两种选择:
- Valid 卷积:不填充,直接卷积。结果大小为 (n−f+1)×(n−f+1);
- Same 卷积:进行填充,并使得卷积后结果大小与输入一致,这样 p=(f−1)/ 2。
在计算机视觉领域,f通常为奇数。原因包括 Same 卷积中 p=(f−1)/ 2 能得到自然数结果,并且滤波器有一个便于表示其所在位置的中心点。
卷积步长
卷积过程中,有时需要通过填充来避免信息损失,有时也需要通过设置步长(Stride)来压缩一部分信息。
步长表示滤波器在原始图片的水平方向和垂直方向上每次移动的距离。之前,步长被默认为 1。而如果我们设置步长为 2,则卷积过程如下图所示:
设步长为 s,填充长度为p, 输入图片大小为n x n, 滤波器大小为f x f, 则卷积后图片的尺寸为:
注意公式中有一个向下取整的符号,用于处理商不为整数的情况。向下取整反映着当取原始矩阵的图示蓝框完全包括在图像内部时,才对它进行运算。
高维卷积
如果我们想要对三通道的 RGB 图片进行卷积运算,那么其对应的滤波器组也同样是三通道的。过程是将每个单通道(R,G,B)与对应的滤波器进行卷积运算求和,然后再将三个通道的和相加,将 27 个乘积的和作为输出图片的一个像素值。
如果想同时检测垂直和水平边缘,或者更多的边缘检测,可以增加更多的滤波器组。例如设置第一个滤波器组实现垂直边缘检测,第二个滤波器组实现水平边缘检测。设输入图片的尺寸为 n×n×nc(nc为通道数),滤波器尺寸为 f×f×nc,则卷积后的输出图片尺寸为 (n−f+1)×(n−f+1)×n′c,n′c为滤波器组的个数。
单层卷积网络
与之前的卷积过程相比较,卷积神经网络的单层结构多了激活函数和偏移量;而与标准神经网络相比,滤波器的数值对应着权重 W[l],卷积运算对应着 W[l]与 A[l−1]的乘积运算,所选的激活函数变为 ReLU。
对于一个 3x3x3 的滤波器,包括偏移量 b(27+1)在内共有 28 个参数。不论输入的图片有多大,用这一个滤波器来提取特征时,参数始终都是 28 个,固定不变。即选定滤波器组后,参数的数目与输入图片的尺寸无关。因此,卷积神经网络的参数相较于标准神经网络来说要少得多。这是 CNN 的优点之一。
池化
图像中的相邻像素倾向于具有相似的值,因此通常卷积层相邻的输出像素也具有相似的值。这意味着,卷积层输出中包含的大部分信息都是冗余的。如果我们使用边缘检测滤波器并在某个位置找到强边缘,那么我们也可能会在距离这个像素1个偏移的位置找到相对较强的边缘。但是它们都一样是边缘,我们并没有找到任何新东西。池化层解决了这个问题。这个网络层所做的就是通过减小输入的大小降低输出值的数量。池化一般通过简单的最大值、最小值或平均值操作完成。以下是池大小为2的最大池层的示例:
卷积神经网络示例
在计算神经网络的层数时,通常只统计具有权重和参数的层,因此池化层通常和之前的卷积层共同计为一层。
图中的 FC3 和 FC4 为全连接层,与标准的神经网络结构一致。
个人推荐一个直观感受卷积神经网络的网站。
使用卷积的原因
相比标准神经网络,对于大量的输入数据,卷积过程有效地减少了 CNN 的参数数量,原因有以下两点:
-参数共享(Parameter sharing):特征检测如果适用于图片的某个区域,那么它也可能适用于图片的其他区域。即在卷积过程中,不管输入有多大,一个特征探测器(滤波器)就能对整个输入的某一特征进行探测。
-稀疏连接(Sparsity of connections):在每一层中,由于滤波器的尺寸限制,输入和输出之间的连接是稀疏的,每个输出值只取决于输入在局部的一小部分值。
池化过程则在卷积后很好地聚合了特征,通过降维来减少运算量。
由于 CNN 参数数量较小,所需的训练样本就相对较少,因此在一定程度上不容易发生过拟合现象。并且 CNN 比较擅长捕捉区域位置偏移。即进行物体检测时,不太受物体在图片中位置的影响,增加检测的准确性和系统的健壮性。
残差网络
神经网络的两朵乌云
- 梯度爆炸/消失:这个问题很大程度上已经被标准初始化和中间层正规化方法有效控制了,这些方法使得深度神经网络可以收敛。深度神经网络面临的另一朵乌云是网络退化问题:
在神经网络可以收敛的前提下,随着网络深度增加,网络的表现先是逐渐增加至饱和,然后迅速下降
需要注意,网络退化问题不是过拟合导致的,即便在模型训练过程中,同样的训练轮次下,退化的网络也比稍浅层的网络的训练错误更高,如下图所示。
这一点并不符合常理:如果存在某个 K层网络是当前F的最优的网络,我们构造更深的网络。那么K之后的层数可以拟合成恒等映射,就可以取得和F一直的结果。如果K不是最佳层数,那么我们比K深,可以训练出的一定会不差于K的。总而言之,与浅层网络相比,更深的网络的表现不应该更差。因此,一个合理的猜测就是,对神经网络来说,恒等映射并不容易拟合。
也许我们可以对网络单元进行一定的改造,来改善退化问题?这也就引出了残差网络的基本思路
既然神经网络不容易拟合一个恒等映射,那么一种思路就是构造天然的恒等映射。
上图的结构被称为 残差块(Residual block)。通过 捷径(Short cut,或者称跳远连接,Skip connections)可以将 a[l]添加到第二个 ReLU 过程中,直接建立 a[l]与 a[l+2]之间的隔层联系。表达式如下
构建一个残差网络就是将许多残差块堆积在一起,形成一个深度网络。
实验表明,残差网络很好地解决了深度神经网络的退化问题,并在ImageNet和CIFAR-10等图像任务上取得了非常好的结果,同等层数的前提下残差网络也收敛得更快。这使得前馈神经网络可以采用更深的设计。除此之外,去除个别神经网络层,残差网络的表现不会受到显著影响,这与传统的前馈神经网络大相径庭。
残差网络为什么有效
2018年的一篇论文,The Shattered Gradients Problem: If resnets are the answer, then what is the question,指出了一个新的观点,尽管残差网络提出是为了解决梯度弥散和网络退化的问题,它解决的实际上是梯度破碎问题
在标准前馈神经网络中,随着深度增加,梯度逐渐呈现为白噪声(white noise)。
作者通过可视化的小型实验(构建和训练一个神经网络发现,在浅层神经网络中,梯度呈现为棕色噪声(brown noise),深层神经网络的梯度呈现为白噪声。在标准前馈神经网络中,随着深度增加,神经元梯度的相关性(corelation)按指数级减少(1 / 2^L)
;同时,梯度的空间结构也随着深度增加被逐渐消除。这也就是梯度破碎现象。
梯度破碎为什么是一个问题呢?这是因为许多优化方法假设梯度在相邻点上是相似的,破碎的梯度会大大减小这类优化方法的有效性。另外,如果梯度表现得像白噪声,那么某个神经元对网络输出的影响将会很不稳定。
相较标准前馈网络,残差网络中梯度相关性减少的速度从指数级下降到亚线性级)(1 / sqrt(L))
,深度残差网络中,神经元梯度介于棕色噪声与白噪声之间(参见上图中的c,d,e);残差连接可以极大地保留梯度的空间结构。残差结构缓解了梯度破碎问题。
1 x 1 卷积
1x1 卷积指滤波器的尺寸为 1。当通道数为 1 时,1x1 卷积意味着卷积操作等同于乘积操作。
而当通道数更多时,1x1 卷积的作用实际上类似全连接层的神经网络结构,从而降低(或升高,取决于滤波器组数)数据的维度。
池化能压缩数据的高度(nH)及宽度(nW),而 1×1 卷积能压缩数据的通道数(nC)。在如下图所示的例子中,用 filters个大小为 1×1×32 的滤波器进行卷积,就能使原先数据包含的 32个通道压缩为 filters 个。
Inception V1
在这之前,网络大都是这样子的:
也就是卷积层和池化层的顺序连接。这样的话,要想提高精度,增加网络深度和宽度是一个有效途径,但也面临着参数量过多、过拟合等问题。(当然,改改超参数也可以提高性能)
有没有可能在同一层就可以提取不同(稀疏或不稀疏)的特征呢(使用不同尺寸的卷积核)?于是,2014年,在其他人都还在一味的增加网络深度时(比如vgg),GoogleNet就率先提出了卷积核的并行合并(也称Bottleneck Layer),如下图。
和卷积层、池化层顺序连接的结构(如VGG网络)相比,这样的结构主要有以下改进:
- 一层block就包含1x1卷积,3x3卷积,5x5卷积,3x3池化(使用这样的尺寸不是必需的,可以根据需要进行调整)。这样,网络中每一层都能学习到“稀疏”(3x3、5x5)或“不稀疏”(1x1)的特征,既增加了网络的宽度,也增加了网络对尺度的适应性;
- 通过deep concat在每个block后合成特征,获得非线性属性。
按照这样的结构来增加网络的深度,虽然可以提升性能,但是还面临计算量大(参数多)的问题。为改善这种现象,GooLeNet借鉴Network-in-Network的思想,使用1x1的卷积核实现降维操作(也间接增加了网络的深度),以此来减小网络的参数量(这里就不对两种结构的参数量进行定量比较了),如图所示。
最后实现的inception v1网络是上图结构的顺序连接
结语
由于卷积这门课的其他内容和计算机视觉关系比较密切。对我理解推荐系统帮助不大。所以这个系列就到这里。吴恩达的课还是很好的,作业和课和测验我都认真做啦。