引言:
最近同学在做机器学习作业时,代码中遇到了*
@
np.mutiply
.dot
这个几个numpy的运算,发现有点晕,于是我在这里做几个简单的对比,以及列举需要注意的问题
首先先给一个比较简单的用法解释:
*
: 根据数据类型的不同,可能是做点乘运算,也可能做矩阵乘法运算
@
: 只做矩阵乘法运算
.dot
: 只做矩阵乘法运算
np.mutiply
:只做点乘运算
为了说明上述结论的正确性,下面首先对ndarray数据类型进行运算操作
In [1]: import numpy as np
In [2]: a = np.array(np.arange(4)).reshape(2,2)
In [3]: b = a
In [4]: a
Out[4]:
array([[0, 1],
[2, 3]])
In [5]: b
Out[5]:
array([[0, 1],
[2, 3]])
In [6]: np.multiply(a, b)
Out[6]:
array([[0, 1],
[4, 9]])
In [7]: a * b
Out[7]:
array([[0, 1],
[4, 9]])
In [8]: a.dot(b)
Out[8]:
array([[ 2, 3],
[ 6, 11]])
In [9]: a @ b
Out[9]:
array([[ 2, 3],
[ 6, 11]])
如果array不是方阵,我们再运行测试,得到如下结果
In [16]: a = np.array(np.arange(6)).reshape(3,2)
In [17]: a
Out[17]:
array([[0, 1],
[2, 3],
[4, 5]])
In [18]: b = a.T
In [19]: b
Out[19]:
array([[0, 2, 4],
[1, 3, 5]])
In [20]: b * a
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-20-245d0d068c2b> in <module>()
----> 1 b * a
ValueError: operands could not be broadcast together with shapes (2,3) (3,2)
In [21]: np.multiply(b, a)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-23-bae4ae98f8ad> in <module>()
----> 1 np.multiply(b, a)
ValueError: operands could not be broadcast together with shapes (2,3) (3,2)
In [22]: b.dot(a)
Out[22]:
array([[20, 26],
[26, 35]])
In [23]: b @ a
Out[23]:
array([[20, 26],
[26, 35]])
从上面可以发现,针对ndarray而言:
*
和 np.multiply
只能做点乘运算,当运算符两边的数据维度无法满足点乘运算结果时,就会报错
@
和.dot
只能做矩阵乘法运算
然后再对matrix数据类型进行运算操作
In [27]: a = np.matrix(np.arange(4)).reshape(2,2)
In [28]: a
Out[28]:
matrix([[0, 1],
[2, 3]])
In [29]: b = a
In [30]: b
Out[30]:
matrix([[0, 1],
[2, 3]])
In [31]: a * b
Out[31]:
matrix([[ 2, 3],
[ 6, 11]])
In [32]: np.multiply(a,b)
Out[32]:
matrix([[0, 1],
[4, 9]])
In [33]: a @ b
Out[33]:
matrix([[ 2, 3],
[ 6, 11]])
In [34]: a.dot(b)
Out[34]:
matrix([[ 2, 3],
[ 6, 11]])
In [35]: c = np.matrix(np.arange(6)).reshape(3,2)
In [36]: d = c.T
In [37]: c
Out[37]:
matrix([[0, 1],
[2, 3],
[4, 5]])
In [38]: d
Out[38]:
matrix([[0, 2, 4],
[1, 3, 5]])
In [39]: np.multiply(d, c)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-39-6c3683491fc6> in <module>()
----> 1 np.multiply(d, c)
ValueError: operands could not be broadcast together with shapes (2,3) (3,2)
从上面可以发现,针对matrix而言:
*
会做矩阵乘法运算
而 np.multiply
依然只能做点乘运算,当运算符两边的数据维度无法满足点乘运算结果时,就会报错。
@
和.dot
依旧保持只做矩阵乘法运算
总结:
为了防止记混或者出错,有以下建议:
@
来做矩阵乘法运算np.multiply
来做点乘运算如果觉得我有地方讲的不好的或者有错误的欢迎给我留言,谢谢大家阅读(点个赞我可是会很开心的哦)~