python爬虫之多线程爬虫小Demo

  import queue
  import requests
  import threading
  from lxml.html import etree
  import json

  # #maxsize:指定队列中能够存储的最大的数据量
  # dataqueue = queue.Queue(maxsize=40)
  #
  # for i in range(0,50):
  #     if not dataqueue.full():
  #         dataqueue.put(i)
  #
  # #判断队列是否为空
  # isempty = dataqueue.empty()
  # print(isempty)
  #
  # #判断队列是否存满了
  # isfull = dataqueue.full()
  # print(isfull)
  #
  # #n发挥对列的大小
  # size = dataqueue.qsize()
  # print(size)
  #
  # #FIFO(先进的先出)
  # print(dataqueue.get())

  #注意:队列是线程之间常用的数据交换形式,因为队列在线程间,是线程安全的
  """
  1.创建一个任务队列:存放的是带爬取的url地址
  2.创建爬取线程,执行任务的下载
  3.创建数据队列:存放爬取线程获取的页面源码
  4.创建解析线程:解析html源码,提取目标数据,数据持久化
  """
  #获取jobbole的文章列表
  #http://blog.jobbole.com/all-posts/page/1/
  #http://blog.jobbole.com/all-posts/page/2/
  #http://blog.jobbole.com/all-posts/page/3/

  def download_page_data(taskQueue,dataQueue):
      """
      执行下载任务
      :param taskQueue: 从任务队列里面取出任务
      :param dataQueue: 将获取到的页面源码存到dataQueue队列中
      :return:
      """
      while not taskQueue.empty():
          page = taskQueue.get()
          print('正在下载第'+str(page)+'页',threading.currentThread().name)
          full_url = 'http://blog.jobbole.com/all-posts/page/%s/' % str(page)
          req_header = {
              'User-Agent':'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.106 Safari/537.36'
          }
          response = requests.get(full_url,headers=req_header)
  
          if response.status_code == 200:
              #将获取到的页面源码存到dataQueue队列中
              dataQueue.put(response.text)
          else:
              taskQueue.put(page)


  def parse_data(dataQueue,lock):
      """
      解析数据,从dataQueue中取出数据进行解析
      :param dataQueue:
      :return:
      """
      while not dataQueue.empty():
          print('正在解析', threading.currentThread().name)
          html = dataQueue.get()
          html_element = etree.HTML(html)
          articles = html_element.xpath('//div[@class="post floated-thumb"]')

          for article in articles:
              articleInfo = {}
              #标题
              articleInfo['title'] = article.xpath('.//a[@class="archive-title"]/text()')[0]
              #封面
              img_element = article.xpath('.//div[@class="post-thumb"]/a/img')
              if len(img_element) > 0:
                  articleInfo['coverImage'] = img_element[0].xpath('./@src')[0]
              else:
                 articleInfo['coverImage'] = '暂无图片'
              p_as = article.xpath('.//div[@class="post-meta"]/p[1]//a')
              if len(p_as) > 2:
                  #tag类型
                  articleInfo['tag'] = p_as[1].xpath('./text()')[0]
                  #评论量
                  articleInfo['commentNum'] = p_as[2].xpath('./text()')[0]
              else:
                  # tag类型
                  articleInfo['tag'] = p_as[1].xpath('./text()')[0]
                  # 评论量
                  articleInfo['commentNum'] = '0'
              #简介
              articleInfo['content'] = article.xpath('.//span[@class="excerpt"]/p/text()')[0]
              #时间
              articleInfo['publishTime'] = ''.join(article.xpath('.//div[@class="post-meta"]/p[1]/text()')).replace('\n','').replace(' ','').replace('\r','').replace('·','')

              lock.acquire() #加锁
              with open('jobbole.json','a+') as file:
                  json_str = json.dumps(articleInfo,ensure_ascii=False) + '\n'
                  file.write(json_str)
             lock.release() #解锁

  if __name__ == '__main__':

      #创建任务队列
      taskQueue = queue.Queue()

      for i in range(1,201):
          taskQueue.put(i)

      #创建数据队列
     dataQueue = queue.Queue()

      #创建线程执行下载任务
      threadName = ['下载线程1号','下载线程2号','下载线程3号','下载线程4号']
      crawl_thread = []
      for name in threadName:
          #创建线程
          thread_crawl = threading.Thread(
              target=download_page_data,
              name=name,
              args=(taskQueue,dataQueue)
          )
          crawl_thread.append(thread_crawl)
          #开启线程
          thread_crawl.start()

      #让所有的爬取线程执行完毕,在回到主线程中继续执行
      for thread in crawl_thread:
          thread.join()

      #加线程锁
      lock = threading.Lock()
      #创建解析线程,从dataQueue队列中取出页面源码进行解析
      threadName = ['解析线程1号', '解析线程2号', '解析线程3号', '解析线程4号']
      parse_thread = []
      for name in threadName:
          # 创建线程
          thread_parse = threading.Thread(
              target=parse_data,
              name=name,
              args=(dataQueue,lock)
          )
          parse_thread.append(thread_crawl)
          # 开启线程
          thread_parse.start()

      for thread in parse_thread:
          thread.join()

      print('结束了')

你可能感兴趣的:(python爬虫之多线程爬虫小Demo)