- 【sklearn 02】监督学习、非监督下学习、强化学习
@金色海岸
sklearn学习人工智能
监督学习、非监督学习、强化学习**机器学习通常分为无监督学习、监督学习和强化学习三类。-第一类:无监督学习(unsupervisedlearning),指的是从信息出发自动寻找规律,分析数据的结构,常见的无监督学习任务有聚类、降维、密度估计、关联分析等。-第二类:监督学习(supervisedlearning),监督学习指的是使用带标签的数据去训练模型,并预测未知数据的标签。监督学习有两种,当预测
- 面试视角深度解析:索引冗余 vs 覆盖索引 vs 全表扫描的终极抉择
dblens 数据库管理和开发工具
mysql面试java数据库
一、核心概念解析(面试破题关键)1.索引冗余(IndexRedundancy)本质:同一字段存在多个重复或包含关系的索引典型场景重复索引:INDEX(a)和INDEX(a)前缀冗余:已有INDEX(a,b,c)时再建INDEX(a,b)隐式覆盖:主键索引与唯一索引的列重叠面试考点如何通过SHOWINDEX识别冗余索引冗余索引对写性能的影响公式:写入耗时=基础耗时×(索引数+1)存储成本计算:单个索
- C++前缀和神技:区间问题瞬杀模板
三流搬砖艺术家
算法算法数据结构c++
目录前缀和核心价值一维前缀和模板1.预处理公式2.代码实现3.动态图示二维前缀和模板1.预处理公式2.代码实现3.二维示意图六大避坑指南复杂度分析LeetCode实战前缀和核心价值暴力法的痛点://计算区间和,时间复杂度O(n)intsum=0;for(inti=l;iarr={3,1,4,2,5};intn=arr.size();//前缀和数组(从1开始存储)vectorprefix(n+1,0
- 金融时间序列分析(Yahoo Finance API实战)
闲人编程
Python数据分析实战精要金融yfinance时间序列波动率数据归一化数据分析Dash
这里写目录标题金融时间序列分析(YahooFinanceAPI实战)1.引言2.项目背景与意义3.数据集介绍4.GPU加速在数据处理中的应用5.交互式GUI设计与加速处理6.系统整体架构7.数学公式与指标计算8.完整代码实现9.代码自查与BUG排查10.总结与展望金融时间序列分析(YahooFinanceAPI实战)1.引言在当今金融市场中,时间序列数据分析是理解股票、指数以及其他金融产品走势的重
- 洛谷-P5534 【XR-3】等差数列
兔子递归
洛谷题解c++经验分享
题目:P5534【XR-3】等差数列题目分析:首先得输入,然后根据前两项的值算出“d”,即a[2]-a[1]。提示:十年OI一场空,不开longlong见祖宗接着求出前n项:从3开始,到n项结束。递推公式:"a[i]=a[i-1]+d;"。最后从1到n累加,输出。上代码:#includeusingnamespacestd;longa[1000005];intmain(void){longi,d,a
- 支持向量机 (SVM) 算法详解
sssugarr
机器学习算法详解pythonsvm支持向量机算法sklearn
支持向量机(SVM)算法详解支持向量机(SupportVectorMachine,SVM)是一种监督学习模型,广泛应用于分类和回归分析。SVM特别适合高维数据,并且在处理复杂非线性数据时表现出色。本文将详细讲解SVM的原理、数学公式、应用场景及其在Python中的实现。什么是支持向量机?支持向量机的目标是找到一个最佳的决策边界(或称超平面)来最大限度地分隔不同类别的数据点。对于线性可分的数据,SV
- 【人工智能基础2】机器学习、深度学习总结
roman_日积跬步-终至千里
人工智能习题人工智能机器学习深度学习
文章目录一、人工智能关键技术二、机器学习基础1.监督、无监督、半监督学习2.损失函数:四种损失函数3.泛化与交叉验证4.过拟合与欠拟合5.正则化6.支持向量机三、深度学习基础1、概念与原理2、学习方式3、多层神经网络训练方法一、人工智能关键技术领域基础原理与逻辑机器学习机器学习基于数据,研究从观测数据出发寻找规律,利用这些规律对未来数据进行预测。基于学习模式,机器学习可以分为监督、无监督、强化学习
- Linux运维(七)Linux Shell脚本编程:从“Hello World”到“万能脚本大师”
带上一无所知的我
运维linux
LinuxShell脚本编程:从“HelloWorld”到“万能脚本大师”引言如果你还在用鼠标点来点去,那你可能还没体会到Shell脚本的魅力。Shell脚本就像是Linux世界的“魔法咒语”,只需几行代码,就能让系统乖乖听你的话。今天,我们从“HelloWorld”开始,一步步升级到“万能脚本大师”,让你在Linux的世界里呼风唤雨!第一章:HelloWorld!——脚本的起点1.第一个脚本创建
- 代码随想录 Day 44 | 【第九章 动态规划part 07】198.打家劫舍、213.打家劫舍II、337.打家劫舍III
Accept17
动态规划算法
一、198.打家劫舍198.打家劫舍视频讲解:动态规划,偷不偷这个房间呢?|LeetCode:198.打家劫舍_哔哩哔哩_bilibili代码随想录1.解题思路(1)dp数组的含义:考虑下标i(包含下标i及之前的房间)所能偷的最大的金币为dp[i]。求dp[len(nums)-1],仅仅是考虑范围,而不是一定偷或不偷。(2)递推公式:两种状态偷/不偷,偷第i个房间(dp[i-2]+dp[i]),不
- 新手村:统计量均值、中位数、标准差、四分位数
嘉羽很烦
机器学习均值算法算法
新手村:统计量均值、中位数、标准差、四分位数统计量定义与讲解统计量定义计算公式示例说明均值数据集中的所有数值之和除以数值的个数。Mean=∑i=1nxin\text{Mean}=\frac{\sum_{i=1}^{n}x_i}{n}Mean=n∑i=1nxi对于数据集[1,2,3,4,5],均值为(1+2+3+4+5)/5=3(1+2+3+4+5)/5=3(1+2+3+4+5)/5=3中位数将数据
- [M找规律] lc13. 罗马数字转整数(模拟+找规律)
Ypuyu
LeetCode
文章目录1.题目来源2.题目解析方法一:找规律+模拟1.题目来源链接:lc13.罗马数字转整数2.题目解析方法一:找规律+模拟是[M找规律]lc12.整数转罗马数字(模拟+找规律)的逆运算。这个规律就比较好找了,主要在4,9这两列会出问题。能发现规律为这两列字符的前一个要比后一个小,且用后一个字符对应数字减去前一个字符对应数字,就刚好是这个当前这个数字。故,若当前字符比下一个字符小,则需要减去当前
- 通达信资金净流入公式_资金副图指标通达信指标公式源码
罗博深
通达信资金净流入公式
资金副图指标源码:超B:=L2_AMO(0,2)/10000.0;大B:=L2_AMO(1,2)/10000.0;中B:=L2_AMO(2,2)/10000.0;小B:=L2_AMO(3,2)/10000.0;超S:=L2_AMO(0,3)/10000.0;大S:=L2_AMO(1,3)/10000.0;中S:=L2_AMO(2,3)/10000.0;小S:=L2_AMO(3,3)/10000.0
- 【C++】栈的基础语法详解
MAX20131115
c++算法开发语言数据结构其他
栈是C++中的一种基础容器,有“先进先出”的原则。1.定义一个栈stacks;栈的顺序入栈(1)栈中:1入栈(2)栈中:12入栈(3)栈中:123出栈栈中:12出栈栈中:1出栈栈中:无2.增加/删除(1).增加(入栈)增加需要用到‘push’函数(万能头文件中包含栈的函数)用法:intx;cin>>x;s.push(x);(2).删除(出栈)删除需要用到pop函数Tip:只能删除最先进来的数据,空
- 数学 :矩阵
极客 - L U
数学矩阵线性代数
文章目录前言1.基本矩阵运算1.1矩阵加法1.2矩阵减法1.3矩阵乘法2.转置矩阵3.旋转矩阵小结【全文大纲】:https://blog.csdn.net/Engineer_LU/article/details/135149485前言在许多应用场合下,我们都需要用矩阵来表示公式,接下来简洁描述矩阵用法1.基本矩阵运算1.1矩阵加法∣a1b1c1d1∣+∣a2b2c2d2∣=∣a1+a2b1+b2c
- 【论文阅读方法】沐神课程:如何读论文
晴空对晚照
论文阅读论文阅读
一篇论文的一般结构titleabstractintroductionmethodexperienceconclusion三明治论文阅读法第一遍:海选title+abstract+conclusion——确定要不要读第二遍:精读对整个文章过一遍,知道每一块在做什么可以从标题开始读到最后,注意不用咬文嚼字,不要太细节,公式、证明等很细节的部分可以忽略掉重点弄清楚每一个图表,算法在做什么,x轴y轴每一个
- self-attention为什么要除以根号d_k
想念@思恋
python编程概率论深度学习机器学习
self-attention的公式为attention(Q,K,V)=Softmax(QKdk)Vattention(Q,K,V)=Softmax(\frac{QK}{\sqrt{d_{k}}})Vattention(Q,K,V)=Softmax(dkQK)V个人理解,除以dk\sqrt{d_{k}}dk的原因有两点:dkd_{k}dk是词向量/隐藏层的维度1、首先要除以一个数,防止输入softm
- 【matlab代码】基于RSSI的wifi定位例程(三维空间,自适应基站的数量)
MATLAB卡尔曼
定位与导航1024程序员节matlab开发语言定位导航蓝牙
文章目录程序概述程序运行运行方法运行结果代码各模块的功能源代码总结程序概述该程序基于RSSI(接收信号强度指示)原理实现Wi-Fi定位,适用于在三维空间中定位未知点。程序通过多个锚点(基站)测量信号强度,并计算目标点的位置。程序使用以下公式进行位置计算:路径损耗模型公式:RSSI=A−10nlog10(d)RSSI=A-10n\log_{10}(d)RSSI=A−10nlog10(d)其中:RS
- SDN架构解密:控制面如何“指挥”万亿级网络? ——基于“大脑-四肢”模型的三层架构深度解析
不想加班的码小牛
网络架构人工智能ai
摘要本文以“大脑-四肢”类比SDN三层架构,揭示控制器如何通过全局视图管理、南向接口标准化(如OpenFlow)与北向API开放能力,实现对万亿级网络的集中化控制。文中包含OpenFlow协议代码示例、网络拓扑公式及架构图,力求呈现技术细节与实战价值。一、SDN架构的“大脑-四肢”隐喻SDN通过控制平面-数据平面-应用平面的三层架构,构建了网络控制的“中枢神经系统”:控制层(大脑):集中式控制器掌
- 模型可解释性:基于博弈论的SHAP值计算与特征贡献度分析(附PyTorch/TensorFlow实现)
燃灯工作室
Aipytorchtensorflow人工智能
一、技术原理与数学推导(含典型案例)1.1Shapley值基础公式SHAP值基于合作博弈论中的Shapley值,计算公式为:ϕi=∑S⊆F∖{i}∣S∣!(∣F∣−∣S∣−1)!∣F∣![f(S∪{i})−f(S)]\phi_i=\sum_{S\subseteqF\setminus\{i\}}\frac{|S|!(|F|-|S|-1)!}{|F|!}[f(S\cup\{i\})-f(S)]ϕi=S
- 模型可解释性:基于因果推理的反事实生成与决策可视化
燃灯工作室
Ai人工智能数学建模学习机器学习
1.技术原理与数学公式1.1因果推理基础结构方程模型(SEM):X=fX(PaX,UX)X=f_X(Pa_X,U_X)X=fX(PaX,UX)其中PaXPa_XPaX为父节点集合,UXU_XUX为外生变量反事实定义:YX=x(u)=Ydo(X=x)(u)Y_{X=x}(u)=Y_{do(X=x)}(u)YX=x(u)=Ydo(X=x)(u)表示在相同背景条件uuu下,强制变量XXX取xxx时的结果
- 自动化特征选择:基于模型重要性的递归消除原理与实战指南
燃灯工作室
Ai自动化运维
一、技术原理与数学公式1.1递归特征消除(RFE)核心思想J(S)=∑i=1n∣wi∣(特征重要性评分)J(S)=\sum_{i=1}^n|w_i|\quad(特征重要性评分)J(S)=i=1∑n∣wi∣(特征重要性评分)Sk+1=Sk−argminfJ(Sk∖{f})(迭代消除策略)S_{k+1}=S_k-\arg\min_{f}J(S_k\setminus\{f\})\quad(迭代消除策
- 推理流水线DAG调度:多模型组合执行优化方案
燃灯工作室
Ai人工智能数学建模学习机器学习计算机视觉
一、技术原理与数学模型1.1DAG调度核心公式设推理流水线由n个模型节点组成,定义:V={v1,v2,...,vn}V=\{v_1,v_2,...,v_n\}V={v1,v2,...,vn}为节点集合E={(vi,vj)∣vi→vj}E=\{(v_i,v_j)|v_i\rightarrowv_j\}E={(vi,vj)∣vi→vj}为边集合C(vi)C(v_i)C(vi)为节点viv_ivi的计算
- 边缘设备模型量化部署:TFLite INT8校准实现细节深度解析
燃灯工作室
Ai人工智能机器学习
一、技术原理与数学公式INT8量化的核心是通过线性映射将浮点数值范围([-max,max])映射到8位整数范围([-128,127])。校准过程通过分析真实数据分布确定最优缩放因子(scale)和零点(zeropoint):量化公式:Q=round(float_valuescale)+zero_pointQ=round(\frac{float\_value}{scale})+zero\_point
- 基于时间序列预测的推理服务弹性扩缩容实战指南:(行业案例+数学推导+源码解析)
燃灯工作室
Ai计算机视觉语音识别目标检测机器学习人工智能
技术原理(数学公式)整体架构请求量预测→扩缩容决策→资源配置动态调整三阶段闭环,周期为5-30分钟核心预测模型(时间序列预测)LSTM预测公式(CSDN兼容格式):$$h_t=\text{LSTM}(x_t,h_{t-1})\\\hat{y}_{t+1}=W_h\cdoth_t+b_h$$其中Wh∈Rd×1W_h\in\mathbb{R}^{d\times1}Wh∈Rd×1为权重矩阵,ddd为隐藏
- 深度解析A/B测试中的哈希分桶策略:从原理到实战的流量分层方案
燃灯工作室
Python哈希算法算法
一、技术原理与数学基础1.1哈希分桶的核心机制核心公式:桶编号=Hash(用户ID+实验层种子)modN基于**双重哈希(DoubleHashing)**实现流量的完全正交切割:{∀u∈U,Layerij(u)=H(H(u∣∣seedj)∣∣seedi)mod N∀i≠k,H(⋅)满足P(Layeri(u)=m∩Layerk(u)=n)=1/(N2)\begin{cases}\forallu\i
- 正则表达式
大神乔伊
工具正则表达式
前言如果你学会了,可以忽略本文章,或去项目经验地图寻找更多答案原则1.找规律2.不要追求完美3.思考:什么开头?什么结束?什么类型?多少位数?什么范围?出现次数?语法一:对象写法letreg=newRegExp(/\d{5}/)letreg=newRegExp("\\d{5}")letstr='我的号码是12345'console.log(reg.test(str))//true二:字面量方式:l
- Cohen‘s Kappa 系数(κ系数)
大霸王龙
系统分析业务深度学习分类系统架构人工智能
Cohen’sKappa系数(κ系数)是一种用于评估两个标注者(或分类器)之间一致性的统计指标,适用于分类任务。它考虑了随机一致性的影响,提供比简单的准确率(Accuracy)更可靠的评估方式。1.计算公式Cohen’sKappa计算方式如下:[\kappa=\frac{p_o-p_e}{1-p_e}]其中:(p_o)(ObservedAgreement):观察到的一致性,即两个标注者给出相同标签
- C++程序设计语言笔记——抽象机制:泛型程序设计
钺不言
C++笔记c++笔记开发语言经验分享
0模板可传递实参类型而不丢失信息。在C++中,模板传递实参类型时保留所有类型信息的关键在于正确使用引用和转发机制。以下是几种常见场景的解决方案:1.使用万能引用(UniversalReference)和完美转发通过T&&捕获任意类型的引用(左值/右值),结合std::forward保留原始类型信息:templatevoidwrapper(T&&arg){//完美转发,保留所有类型信息(包括cons
- 目标检测中衡量模型速度和精度的指标:FPS和mAP
asdfg1258963
目标检测_ai目标检测人工智能
“FPS”和“mAP”分别衡量了模型的速度和精度。FPS(FramesPerSecond)定义:FPS是“每秒传输帧数”的缩写,用于衡量计算机视觉系统(如目标检测、图像识别等)的实时性能。它表示系统每秒钟能够处理的图像或视频帧的数量。重要性:在实时应用中,如自动驾驶、视频监控等,FPS是一个关键指标。高FPS意味着系统能够快速处理输入的图像数据,实现实时响应。计算方式:FPS可以通过以下公式计算:
- 准确率(Precision)和召回率(Recall)
asdfg1258963
目标检测_ai机器学习算法人工智能
准确率(Precision)定义:准确率是指在模型预测为正的样本中,真正为正的样本所占的比例。它关注的是模型预测的准确性。计算公式:Precision=TPTP+FP\text{Precision}=\frac{\text{TP}}{\text{TP}+\text{FP}}Precision=TP+FPTP其中:TP(TruePositive):真正例,模型正确预测为正的样本数。FP(FalseP
- 关于旗正规则引擎规则中的上传和下载问题
何必如此
文件下载压缩jsp文件上传
文件的上传下载都是数据流的输入输出,大致流程都是一样的。
一、文件打包下载
1.文件写入压缩包
string mainPath="D:\upload\"; 下载路径
string tmpfileName=jar.zip; &n
- 【Spark九十九】Spark Streaming的batch interval时间内的数据流转源码分析
bit1129
Stream
以如下代码为例(SocketInputDStream):
Spark Streaming从Socket读取数据的代码是在SocketReceiver的receive方法中,撇开异常情况不谈(Receiver有重连机制,restart方法,默认情况下在Receiver挂了之后,间隔两秒钟重新建立Socket连接),读取到的数据通过调用store(textRead)方法进行存储。数据
- spark master web ui 端口8080被占用解决方法
daizj
8080端口占用sparkmaster web ui
spark master web ui 默认端口为8080,当系统有其它程序也在使用该接口时,启动master时也不会报错,spark自己会改用其它端口,自动端口号加1,但为了可以控制到指定的端口,我们可以自行设置,修改方法:
1、cd SPARK_HOME/sbin
2、vi start-master.sh
3、定位到下面部分
- oracle_执行计划_谓词信息和数据获取
周凡杨
oracle执行计划
oracle_执行计划_谓词信息和数据获取(上)
一:简要说明
在查看执行计划的信息中,经常会看到两个谓词filter和access,它们的区别是什么,理解了这两个词对我们解读Oracle的执行计划信息会有所帮助。
简单说,执行计划如果显示是access,就表示这个谓词条件的值将会影响数据的访问路径(表还是索引),而filter表示谓词条件的值并不会影响数据访问路径,只起到
- spring中datasource配置
g21121
dataSource
datasource配置有很多种,我介绍的一种是采用c3p0的,它的百科地址是:
http://baike.baidu.com/view/920062.htm
<!-- spring加载资源文件 -->
<bean name="propertiesConfig"
class="org.springframework.b
- web报表工具FineReport使用中遇到的常见报错及解决办法(三)
老A不折腾
finereportFAQ报表软件
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、repeated column width is largerthan paper width:
这个看这段话应该是很好理解的。比如做的模板页面宽度只能放
- mysql 用户管理
墙头上一根草
linuxmysqluser
1.新建用户 //登录MYSQL@>mysql -u root -p@>密码//创建用户mysql> insert into mysql.user(Host,User,Password) values(‘localhost’,'jeecn’,password(‘jeecn’));//刷新系统权限表mysql>flush privileges;这样就创建了一个名为:
- 关于使用Spring导致c3p0数据库死锁问题
aijuans
springSpring 入门Spring 实例Spring3Spring 教程
这个问题我实在是为整个 springsource 的员工蒙羞
如果大家使用 spring 控制事务,使用 Open Session In View 模式,
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.
- 百度词库联想
annan211
百度
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>RunJS</title&g
- int数据与byte之间的相互转换实现代码
百合不是茶
位移int转bytebyte转int基本数据类型的实现
在BMP文件和文件压缩时需要用到的int与byte转换,现将理解的贴出来;
主要是要理解;位移等概念 http://baihe747.iteye.com/blog/2078029
int转byte;
byte转int;
/**
* 字节转成int,int转成字节
* @author Administrator
*
- 简单模拟实现数据库连接池
bijian1013
javathreadjava多线程简单模拟实现数据库连接池
简单模拟实现数据库连接池
实例1:
package com.bijian.thread;
public class DB {
//private static final int MAX_COUNT = 10;
private static final DB instance = new DB();
private int count = 0;
private i
- 一种基于Weblogic容器的鉴权设计
bijian1013
javaweblogic
服务器对请求的鉴权可以在请求头中加Authorization之类的key,将用户名、密码保存到此key对应的value中,当然对于用户名、密码这种高机密的信息,应该对其进行加砂加密等,最简单的方法如下:
String vuser_id = "weblogic";
String vuse
- 【RPC框架Hessian二】Hessian 对象序列化和反序列化
bit1129
hessian
任何一个对象从一个JVM传输到另一个JVM,都要经过序列化为二进制数据(或者字符串等其他格式,比如JSON),然后在反序列化为Java对象,这最后都是通过二进制的数据在不同的JVM之间传输(一般是通过Socket和二进制的数据传输),本文定义一个比较符合工作中。
1. 定义三个POJO
Person类
package com.tom.hes
- 【Hadoop十四】Hadoop提供的脚本的功能
bit1129
hadoop
1. hadoop-daemon.sh
1.1 启动HDFS
./hadoop-daemon.sh start namenode
./hadoop-daemon.sh start datanode
通过这种逐步启动的方式,比start-all.sh方式少了一个SecondaryNameNode进程,这不影响Hadoop的使用,其实在 Hadoop2.0中,SecondaryNa
- 中国互联网走在“灰度”上
ronin47
管理 灰度
中国互联网走在“灰度”上(转)
文/孕峰
第一次听说灰度这个词,是任正非说新型管理者所需要的素质。第二次听说是来自马化腾。似乎其他人包括马云也用不同的语言说过类似的意思。
灰度这个词所包含的意义和视野是广远的。要理解这个词,可能同样要用“灰度”的心态。灰度的反面,是规规矩矩,清清楚楚,泾渭分明,严谨条理,是决不妥协,不转弯,认死理。黑白分明不是灰度,像彩虹那样
- java-51-输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
bylijinnan
java
public class PrintMatrixClockwisely {
/**
* Q51.输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
例如:如果输入如下矩阵:
1 2 3 4
5 6 7 8
9
- mongoDB 用户管理
开窍的石头
mongoDB用户管理
1:添加用户
第一次设置用户需要进入admin数据库下设置超级用户(use admin)
db.addUsr({user:'useName',pwd:'111111',roles:[readWrite,dbAdmin]});
第一个参数用户的名字
第二个参数
- [游戏与生活]玩暗黑破坏神3的一些问题
comsci
生活
暗黑破坏神3是有史以来最让人激动的游戏。。。。但是有几个问题需要我们注意
玩这个游戏的时间,每天不要超过一个小时,且每次玩游戏最好在白天
结束游戏之后,最好在太阳下面来晒一下身上的暗黑气息,让自己恢复人的生气
&nb
- java 二维数组如何存入数据库
cuiyadll
java
using System;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Xml;
using System.Xml.Serialization;
using System.IO;
namespace WindowsFormsApplication1
{
- 本地事务和全局事务Local Transaction and Global Transaction(JTA)
darrenzhu
javaspringlocalglobaltransaction
Configuring Spring and JTA without full Java EE
http://spring.io/blog/2011/08/15/configuring-spring-and-jta-without-full-java-ee/
Spring doc -Transaction Management
http://docs.spring.io/spri
- Linux命令之alias - 设置命令的别名,让 Linux 命令更简练
dcj3sjt126com
linuxalias
用途说明
设置命令的别名。在linux系统中如果命令太长又不符合用户的习惯,那么我们可以为它指定一个别名。虽然可以为命令建立“链接”解决长文件名的问 题,但对于带命令行参数的命令,链接就无能为力了。而指定别名则可以解决此类所有问题【1】。常用别名来简化ssh登录【见示例三】,使长命令变短,使常 用的长命令行变短,强制执行命令时询问等。
常用参数
格式:alias
格式:ali
- yii2 restful web服务[格式响应]
dcj3sjt126com
PHPyii2
响应格式
当处理一个 RESTful API 请求时, 一个应用程序通常需要如下步骤 来处理响应格式:
确定可能影响响应格式的各种因素, 例如媒介类型, 语言, 版本, 等等。 这个过程也被称为 content negotiation。
资源对象转换为数组, 如在 Resources 部分中所描述的。 通过 [[yii\rest\Serializer]]
- MongoDB索引调优(2)——[十]
eksliang
mongodbMongoDB索引优化
转载请出自出处:http://eksliang.iteye.com/blog/2178555 一、概述
上一篇文档中也说明了,MongoDB的索引几乎与关系型数据库的索引一模一样,优化关系型数据库的技巧通用适合MongoDB,所有这里只讲MongoDB需要注意的地方 二、索引内嵌文档
可以在嵌套文档的键上建立索引,方式与正常
- 当滑动到顶部和底部时,实现Item的分离效果的ListView
gundumw100
android
拉动ListView,Item之间的间距会变大,释放后恢复原样;
package cn.tangdada.tangbang.widget;
import android.annotation.TargetApi;
import android.content.Context;
import android.content.res.TypedArray;
import andr
- 程序员用HTML5制作的爱心树表白动画
ini
JavaScriptjqueryWebhtml5css
体验效果:http://keleyi.com/keleyi/phtml/html5/31.htmHTML代码如下:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"><head><meta charset="UTF-8" >
<ti
- 预装windows 8 系统GPT模式的ThinkPad T440改装64位 windows 7旗舰版
kakajw
ThinkPad预装改装windows 7windows 8
该教程具有普遍参考性,特别适用于联想的机器,其他品牌机器的处理过程也大同小异。
该教程是个人多次尝试和总结的结果,实用性强,推荐给需要的人!
缘由
小弟最近入手笔记本ThinkPad T440,但是特别不能习惯笔记本出厂预装的Windows 8系统,而且厂商自作聪明地预装了一堆没用的应用软件,消耗不少的系统资源(本本的内存为4G,系统启动完成时,物理内存占用比
- Nginx学习笔记
mcj8089
nginx
一、安装nginx 1、在nginx官方网站下载一个包,下载地址是:
http://nginx.org/download/nginx-1.4.2.tar.gz
2、WinSCP(ftp上传工
- mongodb 聚合查询每天论坛链接点击次数
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 18 */
{
"_id" : ObjectId("5596414cbe4d73a327e50274"),
"msgType" : "text",
"sendTime" : ISODate("2015-07-03T08:01:16.000Z"
- java术语(PO/POJO/VO/BO/DAO/DTO)
Luob.
DAOPOJODTOpoVO BO
PO(persistant object) 持久对象
在o/r 映射的时候出现的概念,如果没有o/r映射,就没有这个概念存在了.通常对应数据模型(数据库),本身还有部分业务逻辑的处理.可以看成是与数据库中的表相映射的java对象.最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合.PO中应该不包含任何对数据库的操作.
VO(value object) 值对象
通
- 算法复杂度
Wuaner
Algorithm
Time Complexity & Big-O:
http://stackoverflow.com/questions/487258/plain-english-explanation-of-big-o
http://bigocheatsheet.com/
http://www.sitepoint.com/time-complexity-algorithms/