最近学习一些关于J.U.C的Lock锁的知识,记录一下以免忘记
Java.util.concurrent是并发编程中常用的工具类。包含了线程池,阻塞队列,计时器,同步器,并发集合等等。
Lock是J.U.C的核心组件,J.U.C有很多组件都有使用到Lock,锁最重要的特征就是解决并发时多线程共享数据的安全问题。
ReentrantLock是Lock接口使用最多的实现,ReentrantLock和synchronized一样,支持锁的重入,当前线程t1持有锁,在线程t1内部调用使用同一把锁的另一个方法时,不需要重新获取锁,只需要把锁的state值+1.
public class ReentrantDemo{
public synchronized void demo(){
System.out.println("begin:demo");
demo2();
}
public void demo2(){
System.out.println("begin:demo1");
synchronized (this){
}
}
public static void main(String[] args) {
ReentrantDemo rd=new ReentrantDemo();
new Thread(rd::demo).start();
}
}
ReentranLock同样可以保证多线程共享数据的可见,有序,安全,用法上比起sychronized更灵活
public class LockDemo{
static ReentrantLock lock = new ReentrantLock();
static int count = 0;
public static void main(String[] args) throws InterruptedException {
for(int i=0; i<1000; i++){
new Thread(() -> LockDemo.calc()).start();
}
Thread.sleep(3000);
System.out.println("count : " + count);
}
public static void calc() {
lock.lock();
try{
Thread.sleep(1);
}catch (InterruptedException e){
e.printStackTrace();
}
count++;
lock.unlock();
}
}
在分析ReentrantLock的锁原理之前,我们需要了解实现锁机制锁依赖的数据结构AbstractQueuedSynchronizer,简称AQS双向链表
###AQS的内部实现
AQS队列是一个FIFIO的双向链表,它的每一个节点是一个Node对象,这种链表的每个Node结构都有两个指针,分别指向后继节点和前驱节点。每个Node中都由线程分装,当线程抢占锁失败后,线程会封装成Node加入到AQS队列中,当持有锁的线程释放锁,会唤醒AQS队列中离头节点最近的下一个Node,当唤醒线程获取锁成功,会将此Node的Thread置为null,并替换原有的头节点,原头结点从AQS队列移除。这些在后续代码分析中再体现。
static final class Node {
static final Node SHARED = new Node();
static final Node EXCLUSIVE = null;
static final int CANCELLED = 1; //竞争锁异常设置为CNANCELLED
static final int SIGNAL = -1; //前驱节点唤醒后继节点waisatus为-1的Node
static final int CONDITION = -2; //condition相关的线程调用condition.await()在condition队列中的waitstatus
static final int PROPAGATE = -3;
volatile int waitStatus; //线程状态标识
volatile Node prev; //前驱节点
volatile Node next; //后继节点
volatile Thread thread;
ReentrantLock.lock()非公平锁时序图
ReentrantLock.lock()获取锁入口
public void lock() {
sync.lock();
}
Sync实际上是ReentrantLock的抽象的静态内部类,它继承了AQS来实现重入锁逻辑,AQS是一个同步队列,它能够实现线程的阻塞和唤醒,但是不具备业务能力,所以在不同的业务场景会继承AQS来实现对应场景的功能。
Sync有两个具体实现类也是ReentrantLock的内部类,分别是
-NofairSync:表示可以存在抢占锁的功能,也就是说不管当前队列上是否存在其他
线程等待,新线程都有机会抢占锁
-FairSync:表示所有线程严格按照FIFO来获取锁
NonfairSync.lock
由于非公平锁和公平锁的逻辑基本一致,这里选用非公平锁的lock来分析
static final class NonfairSync extends Sync {
private static final long serialVersionUID = 7316153563782823691L;
/**
* Performs lock. Try immediate barge, backing up to normal
* acquire on failure.
*/
final void lock() {
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
else
acquire(1);
}
protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
}
}
//CAS设置锁代码 java.util.concurrent.locks.AbstractQueuedSynchronizer
protected final boolean compareAndSetState(int expect, int update) {
// See below for intrinsics setup to support this
return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
}
通过CAS乐果锁方式比较替换,如果内存的中state与传入的expect相等,则将state更新成expect,返回true,否则返回false
state是AQS类的一个属性,对于重入锁来说,它代表着重入的次数,
设置state成功后,会设置exclusiveOwnerThread为获取锁的thread
public abstract class AbstractOwnableSynchronizer
implements java.io.Serializable {
private transient Thread exclusiveOwnerThread;
protected final void setExclusiveOwnerThread(Thread thread) {
exclusiveOwnerThread = thread;
}
}
加入第一个线程ThreadA进来,此时state=0 exclusiveOwnerThread = null,此时还没有进入AQS,线程设置在AQS的父类AbstractOwnableSynchronizer中,
第二个线程ThreadB由于线程A将state赋值1,所以B进入acquire(args)
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
//在进入AQS队列之前会再次尝试获取锁,因为可能到这一步刚好锁被释放
protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
}
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
/如果state=0,没有线程持有锁,直接CAS尝试获取锁
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
//如果state>0,并且持有锁的线程是当前线程,则重入次数+1
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
tryAcquired做了三件事
private Node addWaiter(Node mode) {
Node node = new Node(Thread.currentThread(), mode); //将当前竞锁失败的thread封装成node
// Try the fast path of enq; backup to full enq on failure
Node pred = tail;
//如果AQS队列有存在Node,直接通过CAS把当前Node设置为Tail
if (pred != null) {
node.prev = pred;
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
//如果AQS为空,或者设置Tail失败,进入自旋将Node加入到AQS中
enq(node);
//将node返回
return node;
}
private Node enq(final Node node) {
for (;;) {
Node t = tail;
//如果AQS队列为空,由第一个尝试加入AQS队列的Thread,初始化AQS为一个空的Node(waitStatus=0,thread=null)
if (t == null) {
// Must initialize
if (compareAndSetHead(new Node()))
tail = head;
} else {
node.prev = t;
if (compareAndSetTail(t, node)) {
t.next = node;
//返回当前线程的上一个Node
return t;
}
}
}
}
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
//addWaiter加入AQS之后执行acquireQueued
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
//初始化线程中断状态 false,表示未被中断
boolean interrupted = false;
for (;;) {
//加入AQS并不会马上阻塞,此时可能ThreadA释放了,如果node.prev是head,会再次尝试竞争锁
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
//如果ThreadB执行tryAcquire成功,将原来AQS对应node设置为head并将thread设置为空
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
//tryAcquire失败,进入挂起线程逻辑
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
private void setHead(Node node) {
head = node;
node.thread = null;
node.prev = null;
}
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
//前一个节点的waitStatus
int ws = pred.waitStatus;
if (ws == Node.SIGNAL)
/*
* This node has already set status asking a release
* to signal it, so it can safely park.
*/
//如果上一个节点是SIGNAL(-1)返回true,parkAndCheckInterrupt()挂起线程
return true;
if (ws > 0) {
/*
* Predecessor was cancelled. Skip over predecessors and
* indicate retry.
*/
//waitStatus>0只有CANCALLED(1)在竞争锁发生异常是设置为CANCELLED; 删除前驱节点中的CANCELLED,直到往前找到最近不为CANCELLED的一个节点,设置为node的前驱节点
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {
/*
* waitStatus must be 0 or PROPAGATE. Indicate that we
* need a signal, but don't park yet. Caller will need to
* retry to make sure it cannot acquire before parking.
*/
//如果ws是CONDITION(ws=-2)或者初始的ws=0设置pred前驱节点状态为SIGNAL(-1)
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
return false;
//如果shouldParkAfterFailedAcquire()方法返回true执行parkAndCheckInterrupt
private final boolean parkAndCheckInterrupt() {
//调用park方法挂起当前线程
LockSupport.park(this);
return Thread.interrupted();
}
如果ThreadA在加入AQS之后,调用acquireQueued释放了锁
如果ThreadA没有释放锁,
public void unlock() {
//每次调用unlock只能释放一次重入次数
sync.release(1);
}
public final boolean release(int arg) {
if (tryRelease(arg)) {
//ThreadA释放锁成功
//获取AQS头结点
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
}
protected final boolean tryRelease(int releases) {
int c = getState() - releases;
if (Thread.currentThread() != getExclusiveOwnerThread())
//调用release的不是当前线程,抛出IllegalMonitorStateException
throw new IllegalMonitorStateException();
boolean free = false;
//由于只有当前线程才能调用tryRelease,所以不需要CAS操作
//如果state在变为0时, setExclusiveOwnerThread(null);返回true
if (c == 0) {
free = true;
setExclusiveOwnerThread(null);
}
//更新重入状态值 返回false
setState(c);
return free;
}
private void unparkSuccessor(Node node) {
/*
* If status is negative (i.e., possibly needing signal) try
* to clear in anticipation of signalling. It is OK if this
* fails or if status is changed by waiting thread.
*/
//获取head头结点的waitStatus状态
int ws = node.waitStatus;
if (ws < 0)
//如果是SIGNAL(-1)或者CONDITION(-2)设置为初始状态0
compareAndSetWaitStatus(node, ws, 0);
/*
* Thread to unpark is held in successor, which is normally
* just the next node. But if cancelled or apparently null,
* traverse backwards from tail to find the actual
* non-cancelled successor.
*/
//尝试唤醒head节点的下一个节点 ThreadB
Node s = node.next;
//如果下一个节点为null或者waitStatus是CANCELLED(-1),从tail开始向前遍历,查询最近的waitStatus<0的节点
if (s == null || s.waitStatus > 0) {
s = null;
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)
s = t;
}
if (s != null)
LockSupport.unpark(s.thread);
}
//为什么从tail开始遍历回顾enq方法
private Node enq(final Node node) {
for (;;) {
Node t = tail;
if (t == null) {
// Must initialize
if (compareAndSetHead(new Node()))
tail = head;
} else {
node.prev = t;
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}
}
}
}
//node.prev关系在CAS操作之前建立,如果compareAndSetTail(t, node)成功
//但是t.next()还没有执行,导致node为tail的节点被忽略
unparkSuccessor(Node node)最终会执行LockSupport.unpark(s.thread);唤醒离tail节点的最近一个waitStatus<=0节点
ThreadB从被挂起的位置继续执行
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
//ThreadB被ThreadA唤醒后再次自旋
final Node p = node.predecessor();
//此时ThreadB满足条件并且tryAcquire(arg)成功
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
//返回interrupted状态
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
//parkAndCheckInterrupt返回true说明被中断过设置interrupted为true交给外面一层响应中断
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
private final boolean parkAndCheckInterrupt() {
LockSupport.park(this);
//被唤醒后首先获取中断标识,是否在被阻塞过程中其他线程调用threadb.interrupted()方法
return Thread.interrupted();
}
//acquire响应acquireQueued的结果 执行selfInterrupt方法
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
static void selfInterrupt() {
//将当前线程的状态设置为中断
Thread.currentThread().interrupt();
}