基于kaldi的iOS实时语音识别(本地)+05+解码

iOS在线识别:https://www.jianshu.com/u/3c2a0bd52ebc

前面部分讲的跟语音识别关系不大,这部分开始讲解语音识别相关的内容,首先接上部分内容,来讲解一下语音识别的解码,即输入音频输出文本。

先看一下kaldi给出的解码参考代码:

int main(int argc, char *argv[]) {
  try {
    using namespace kaldi;
    using namespace fst;

    typedef kaldi::int32 int32;
    typedef kaldi::int64 int64;

    const char *usage =
        "Reads in wav file(s) and simulates online decoding with neural nets\n"
        "(nnet3 setup), with optional iVector-based speaker adaptation and\n"
        "optional endpointing.  Note: some configuration values and inputs are\n"
        "set via config files whose filenames are passed as options\n"
        "\n"
        "Usage: online2-wav-nnet3-latgen-faster [options]   "
        "  \n"
        "The spk2utt-rspecifier can just be   if\n"
        "you want to decode utterance by utterance.\n";

    ParseOptions po(usage);

    std::string word_syms_rxfilename;

    // feature_opts includes configuration for the iVector adaptation,
    // as well as the basic features.
    OnlineNnet2FeaturePipelineConfig feature_opts;
    nnet3::NnetSimpleLoopedComputationOptions decodable_opts;
    LatticeFasterDecoderConfig decoder_opts;
    OnlineEndpointConfig endpoint_opts;

    BaseFloat chunk_length_secs = 0.18;
    bool do_endpointing = false;
    bool online = true;

    po.Register("chunk-length", &chunk_length_secs,
                "Length of chunk size in seconds, that we process.  Set to <= 0 "
                "to use all input in one chunk.");
    po.Register("word-symbol-table", &word_syms_rxfilename,
                "Symbol table for words [for debug output]");
    po.Register("do-endpointing", &do_endpointing,
                "If true, apply endpoint detection");
    po.Register("online", &online,
                "You can set this to false to disable online iVector estimation "
                "and have all the data for each utterance used, even at "
                "utterance start.  This is useful where you just want the best "
                "results and don't care about online operation.  Setting this to "
                "false has the same effect as setting "
                "--use-most-recent-ivector=true and --greedy-ivector-extractor=true "
                "in the file given to --ivector-extraction-config, and "
                "--chunk-length=-1.");
    po.Register("num-threads-startup", &g_num_threads,
                "Number of threads used when initializing iVector extractor.");

    feature_opts.Register(&po);
    decodable_opts.Register(&po);
    decoder_opts.Register(&po);
    endpoint_opts.Register(&po);


    po.Read(argc, argv);

    if (po.NumArgs() != 5) {
      po.PrintUsage();
      return 1;
    }

    std::string nnet3_rxfilename = po.GetArg(1),
        fst_rxfilename = po.GetArg(2),
        spk2utt_rspecifier = po.GetArg(3),
        wav_rspecifier = po.GetArg(4),
        clat_wspecifier = po.GetArg(5);

    OnlineNnet2FeaturePipelineInfo feature_info(feature_opts);

    if (!online) {
      feature_info.ivector_extractor_info.use_most_recent_ivector = true;
      feature_info.ivector_extractor_info.greedy_ivector_extractor = true;
      chunk_length_secs = -1.0;
    }

    TransitionModel trans_model;
    nnet3::AmNnetSimple am_nnet;
    {
      bool binary;
      Input ki(nnet3_rxfilename, &binary);
      trans_model.Read(ki.Stream(), binary);
      am_nnet.Read(ki.Stream(), binary);
      SetBatchnormTestMode(true, &(am_nnet.GetNnet()));
      SetDropoutTestMode(true, &(am_nnet.GetNnet()));
      nnet3::CollapseModel(nnet3::CollapseModelConfig(), &(am_nnet.GetNnet()));
    }

    // this object contains precomputed stuff that is used by all decodable
    // objects.  It takes a pointer to am_nnet because if it has iVectors it has
    // to modify the nnet to accept iVectors at intervals.
    nnet3::DecodableNnetSimpleLoopedInfo decodable_info(decodable_opts,
                                                        &am_nnet);


    fst::Fst *decode_fst = ReadFstKaldiGeneric(fst_rxfilename);

    fst::SymbolTable *word_syms = NULL;
    if (word_syms_rxfilename != "")
      if (!(word_syms = fst::SymbolTable::ReadText(word_syms_rxfilename)))
        KALDI_ERR << "Could not read symbol table from file "
                  << word_syms_rxfilename;

    int32 num_done = 0, num_err = 0;
    double tot_like = 0.0;
    int64 num_frames = 0;

    SequentialTokenVectorReader spk2utt_reader(spk2utt_rspecifier);
    RandomAccessTableReader wav_reader(wav_rspecifier);
    CompactLatticeWriter clat_writer(clat_wspecifier);

    OnlineTimingStats timing_stats;

    for (; !spk2utt_reader.Done(); spk2utt_reader.Next()) {
      std::string spk = spk2utt_reader.Key();
      const std::vector &uttlist = spk2utt_reader.Value();
      OnlineIvectorExtractorAdaptationState adaptation_state(
          feature_info.ivector_extractor_info);
      for (size_t i = 0; i < uttlist.size(); i++) {
        std::string utt = uttlist[i];
        if (!wav_reader.HasKey(utt)) {
          KALDI_WARN << "Did not find audio for utterance " << utt;
          num_err++;
          continue;
        }
        const WaveData &wave_data = wav_reader.Value(utt);
        // get the data for channel zero (if the signal is not mono, we only
        // take the first channel).
        SubVector data(wave_data.Data(), 0);

        OnlineNnet2FeaturePipeline feature_pipeline(feature_info);
        feature_pipeline.SetAdaptationState(adaptation_state);

        OnlineSilenceWeighting silence_weighting(
            trans_model,
            feature_info.silence_weighting_config,
            decodable_opts.frame_subsampling_factor);

        SingleUtteranceNnet3Decoder decoder(decoder_opts, trans_model,
                                            decodable_info,
                                            *decode_fst, &feature_pipeline);
        OnlineTimer decoding_timer(utt);

        BaseFloat samp_freq = wave_data.SampFreq();
        int32 chunk_length;
        if (chunk_length_secs > 0) {
          chunk_length = int32(samp_freq * chunk_length_secs);
          if (chunk_length == 0) chunk_length = 1;
        } else {
          chunk_length = std::numeric_limits::max();
        }

        int32 samp_offset = 0;
        std::vector > delta_weights;

        while (samp_offset < data.Dim()) {
          int32 samp_remaining = data.Dim() - samp_offset;
          int32 num_samp = chunk_length < samp_remaining ? chunk_length
                                                         : samp_remaining;

          SubVector wave_part(data, samp_offset, num_samp);
          feature_pipeline.AcceptWaveform(samp_freq, wave_part);

          samp_offset += num_samp;
          decoding_timer.WaitUntil(samp_offset / samp_freq);
          if (samp_offset == data.Dim()) {
            // no more input. flush out last frames
            feature_pipeline.InputFinished();
          }

          if (silence_weighting.Active() &&
              feature_pipeline.IvectorFeature() != NULL) {
            silence_weighting.ComputeCurrentTraceback(decoder.Decoder());
            silence_weighting.GetDeltaWeights(feature_pipeline.NumFramesReady(),
                                              &delta_weights);
            feature_pipeline.IvectorFeature()->UpdateFrameWeights(delta_weights);
          }

          decoder.AdvanceDecoding();

          if (do_endpointing && decoder.EndpointDetected(endpoint_opts)) {
            break;
          }
        }
        decoder.FinalizeDecoding();

        CompactLattice clat;
        bool end_of_utterance = true;
        decoder.GetLattice(end_of_utterance, &clat);

        GetDiagnosticsAndPrintOutput(utt, word_syms, clat,
                                     &num_frames, &tot_like);

        decoding_timer.OutputStats(&timing_stats);

        // In an application you might avoid updating the adaptation state if
        // you felt the utterance had low confidence.  See lat/confidence.h
        feature_pipeline.GetAdaptationState(&adaptation_state);

        // we want to output the lattice with un-scaled acoustics.
        BaseFloat inv_acoustic_scale =
            1.0 / decodable_opts.acoustic_scale;
        ScaleLattice(AcousticLatticeScale(inv_acoustic_scale), &clat);

        clat_writer.Write(utt, clat);
        KALDI_LOG << "Decoded utterance " << utt;
        num_done++;
      }
    }
    timing_stats.Print(online);

    KALDI_LOG << "Decoded " << num_done << " utterances, "
              << num_err << " with errors.";
    KALDI_LOG << "Overall likelihood per frame was " << (tot_like / num_frames)
              << " per frame over " << num_frames << " frames.";
    delete decode_fst;
    delete word_syms; // will delete if non-NULL.
    return (num_done != 0 ? 0 : 1);
  } catch(const std::exception& e) {
    std::cerr << e.what();
    return -1;
  }
} // main()

我们的解码:

static void kaldidecoder_decode_segment(Gstkaldidecoder * filter,
                                                        bool &more_data,
                                                        int32 chunk_length,
                                                        BaseFloat traceback_period_secs) {
  OnlineNnet2FeaturePipeline feature_pipeline(*(filter->feature_info));
  feature_pipeline.SetAdaptationState(*(filter->adaptation_state));
  SingleUtteranceNnet3Decoder decoder(*(filter->decoder_opts),
                                      *(filter->trans_model), 
                                      *(filter->decodable_info_nnet3),
                                      *(filter->decode_fst),
                                      &feature_pipeline);
  OnlineSilenceWeighting silence_weighting(*(filter->trans_model),
          *(filter->silence_weighting_config));

  Vector wave_part = Vector(chunk_length);
  std::vector > delta_weights;
  DEBUG_OBJECT(filter, "Reading audio in %d sample chunks...",
                   wave_part.Dim());
  BaseFloat last_traceback = 0.0;
  BaseFloat num_seconds_decoded = 0.0;
  while (true) {
    more_data = filter->audio_source->Read(&wave_part);

    feature_pipeline.AcceptWaveform(filter->sample_rate, wave_part);
    if (!more_data) {
      feature_pipeline.InputFinished();
    }

    if (silence_weighting.Active() && 
        feature_pipeline.IvectorFeature() != NULL) {
      silence_weighting.ComputeCurrentTraceback(decoder.Decoder());
      silence_weighting.GetDeltaWeights(feature_pipeline.IvectorFeature()->NumFramesReady(), 
                                        &delta_weights);
      feature_pipeline.IvectorFeature()->UpdateFrameWeights(delta_weights);
    }

    decoder.AdvanceDecoding();
    DEBUG_OBJECT(filter, "%d frames decoded", decoder.NumFramesDecoded());
    num_seconds_decoded += 1.0 * wave_part.Dim() / filter->sample_rate;
    filter->total_time_decoded += 1.0 * wave_part.Dim() / filter->sample_rate;
    DEBUG_OBJECT(filter, "Total amount of audio processed: %f seconds", filter->total_time_decoded);
    if (!more_data) {
      break;
    }
    if (filter->do_endpointing
        && (decoder.NumFramesDecoded() > 0)
        && decoder.EndpointDetected(*(filter->endpoint_config))) {
      GST_DEBUG_OBJECT(filter, "Endpoint detected!");
      break;
    }

    if ((num_seconds_decoded - last_traceback > traceback_period_secs)
        && (decoder.NumFramesDecoded() > 0)) {
      Lattice lat;
      decoder.GetBestPath(false, &lat);
      kaldidecoder_partial_result(filter, lat);
      last_traceback += traceback_period_secs;
    }
  }

  if (num_seconds_decoded > 0.1) {
    DEBUG_OBJECT(filter, "Getting lattice..");
    decoder.FinalizeDecoding();
    CompactLattice clat;
    bool end_of_utterance = true;
    decoder.GetLattice(end_of_utterance, &clat);
    DEBUG_OBJECT(filter, "Lattice done");
    if ((filter->lm_fst != NULL) && (filter->big_lm_const_arpa != NULL)) {
      DEBUG_OBJECT(filter, "Rescoring lattice with a big LM");
      CompactLattice rescored_lat;
      if (kaldidecoder_rescore_big_lm(filter, clat, rescored_lat)) {
        clat = rescored_lat;
      }
    }

    guint num_words = 0;
    kaldidecoder_final_result(filter, clat, &num_words);
    if (num_words >= filter->min_words_for_ivector) {
      // Only update adaptation state if the utterance contained enough words
      feature_pipeline.GetAdaptationState(filter->adaptation_state);
    }
  } else {
    DEBUG_OBJECT(filter, "Less than 0.1 seconds decoded, discarding");
  }
}

后面会详细讲解解码

demo:https://github.com/andyweiqiu/asr-ios-local

你可能感兴趣的:(基于kaldi的iOS实时语音识别(本地)+05+解码)