RSA加密算法学习

RSA是第一个比较完善的公开密钥算法,它既能用于加密,也能用于数字签名。RSA以它的三个发明者Ron Rivest, Adi Shamir, Leonard Adleman的名字首字母命名,这个算法经受住了多年深入的密码分析,虽然密码分析者既不能证明也不能否定RSA的安全性,但这恰恰说明该算法有一定的可信性,目前它已经成为最流行的公开密钥算法。

RSA的安全基于大数分解的难度。其公钥和私钥是一对大素数(100到200位十进制数或更大)的函数。从一个公钥和密文恢复出明文的难度,等价于分解两个大素数之积(这是公认的数学难题)。
RSA的公钥、私钥的组成,以及加密、解密的公式可见于下表:

Table Are
公钥 KU n:两素数p和q的乘积(p和q必须保密) e:与(p-1)(q-1)互质
私钥 KR d: $e^{-1}(mod(p-1)(q-1))$
加密 $C ≡ m^e \quad mod \quad n$
解密 $m ≡ c^d \quad mod \quad n$

一、 什么是“素数”?

素数是这样的整数,它除了能表示为它自己和1的乘积以外,不能表示为任何其它两个整数的乘积。例如,15=3*5,所以15不是素数;又如,12=6*2=4*3,所以12也不是素数。另一方面,13除了等于13*1以外,不能表示为其它任何两个整数的乘积,所以13是一个素数。素数也称为“质数”。

二、什么是“互质数”(或“互素数”)?

小学数学教材对互质数是这样定义的:“公约数只有1的两个数,叫做互质数。”这里所说的“两个数”是指自然数。

判别方法主要有以下几种(不限于此):
(1)两个质数一定是互质数。例如,2与7、13与19。
(2)一个质数如果不能整除另一个合数,这两个数为互质数。例如,3与10、5与 26。
(3)1不是质数也不是合数,它和任何一个自然数在一起都是互质数。如1和9908。
(4)相邻的两个自然数是互质数。如 15与 16。
(5)相邻的两个奇数是互质数。如 49与 51。
(6)大数是质数的两个数是互质数。如97与88。
(7)小数是质数,大数不是小数的倍数的两个数是互质数。如 7和 16。
(8)两个数都是合数(二数差又较大),小数所有的质因数,都不是大数的约数,这两个数是互质数。如357与715,357=3×7×17,而3、7和17都不是715的约数,这两个数为互质数。等等。

三、什么是模指数运算?

指数运算谁都懂,不必说了,先说说模运算。模运算是整数运算,有一个整数m,以n为模做模运算,即m mod n。怎样做呢?让m去被n整除,只取所得的余数作为结果,就叫做模运算。例如,10 mod 3=1;26 mod 6=2;28 mod 2 =0等等。
 
  模指数运算就是先做指数运算,取其结果再做模运算。如 $5^3 mod \ 7 = 125 \ mod \ 7 = 6 $
  好,现在开始正式讲解RSA加密算法。
算法描述:
(1)选择一对不同的、足够大的素数p,q。

(2)计算n=pq。

(3)计算 f(n) = (p-1)(q-1),同时对p, q严加保密,不让任何人知道。

(4)找一个与 f(n) 互质的数 e,且1 < e < f(n)。

(5)计算d,使得 d*e ≡ 1 mod f(n)。这个公式也可以表达为d ≡ e-1 mod f(n)
这里要解释一下,≡是数论中表示同余的符号。公式中,≡符号的左边必须和符号右边同余,也就是两边模运算结果相同。显而易见,不管f(n)取什么值,符号右边1 mod f(n)的结果都等于1;符号的左边d与e的乘积做模运算后的结果也必须等于1。这就需要计算出d的值,让这个同余等式能够成立。

(6)公钥KU=(e,n),私钥KR=(d,n)。

(7)加密时,先将明文变换成0至n-1的一个整数M。若明文较长,可先分割成适当的组,然后再进行交换。设密文为C,则加密过程为:$ C ≡ M^e (mod \ n)$。

(8)解密过程为:$M ≡ C^d (mod \ n)$。

实例描述

我们可以通过一个简单的例子来理解RSA的工作原理。为了便于计算。在以下实例中只选取小数值的素数p,q,以及e,假设用户A需要将明文“key”通过RSA加密后传递给用户B,过程如下:

(1)设计公私密钥(e,n)和(d,n)。

令p=3,q=11,得出n=pq= 311 = 33;f(n) = (p-1)(q-1) = 2×10 =20;取e=3,(3与20互质)则ed ≡ 1 mod f(n),即3d ≡ 1 mod 20。
d怎样取值呢?可以用试算的办法来寻找。(d的取值使 3*d mod 20 = 1)试算结果见下表:

d ed = 3d (ed) mod (p-1)(q-1) = (3d) mod 20
1 3 3
2 6 6
3 9 9
4 12 12
5 15 15
6 18 18
7 21 1
8 24 3

通过试算我们找到,当d=7时,e×d≡1 mod f(n)同余等式成立。因此,可令d=7。从而我们可以设计出一对公私密钥,加密密钥(公钥)为:KU =(e,n)=(3,33),解密密钥(私钥)为:KR =(d,n)=(7,33)。

(2)英文数字化。

将明文信息数字化,并将每块两个数字分组。假定明文英文字母编码表为按字母顺序排列数值,即:

(3)明文加密

用户加密密钥(3,33) 将数字化明文分组信息加密成密文。由C≡Me(mod n)得:
 11^3 mod 33 = 11;
 5^3 mod 33 = 26;
 25^3 mod 33 = 16;
 因此,得到相应的密文信息为:11,26,16。

例如:用RSA算法加密时,已知公钥是(e=7,n=20),私钥是(d=3,n=20)用公钥对消息M=3加密,则加密解密计算:
  要加密或解密的数字做e次方或d次方,得到的数字再和n进行模运算,模运算就是求余数,拿题目中数据来算的话就是
  3的7次方等于2187,2187除以20等于109,余数是7,所以得到的密文就是7。
  解密就是算7的3次方343,343除以20等于340余数3,于是我们又得回原来的明文3了

(4)密文解密。

用户B收到密文,若将其解密,只需要计算 $M ≡ C^d (mod \ n)$,即:
  11^7 mod 33 = 11;
  26^7 mod 33 = 5;
  16^7 mod 33 = 25;
  用户B得到明文信息为:11,05,25。根据上面的编码表将其转换为英文,我们又得到了恢复后的原文“key”。

当然,实际运用要比这复杂得多,由于RSA算法的公钥私钥的长度(模长度)要到1024位甚至2048位才能保证安全,因此,p、q、e的选取、公钥私钥的生成,加密解密模指数运算都有一定的计算程序,需要仰仗计算机高速完成。

最后简单谈谈RSA的安全性

首先,我们来探讨为什么RSA密码难于破解?

当p和q是一个大素数的时候,从它们的积pq去分解因子p和q,这是一个公认的数学难题。比如当pq大到1024位时,迄今为止还没有人能够利用任何计算工具去完成分解因子的任务。因此,RSA从提出到现在已近二十年,经历了各种攻击的考验,逐渐为人们接受,普遍认为是目前最优秀的公钥方案之一。

然而,虽然RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价。即RSA的重大缺陷是无法从理论上把握它的保密性能如何。

此外,RSA的缺点还有:A)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密。B)分组长度太大,为保证安全性,n 至少也要 600 bits 以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。因此,使用RSA只能加密少量数据,大量的数据加密还要靠对称密码算法。

你可能感兴趣的:(RSA加密算法学习)