- 清华大学《DeepSeek赋能家庭教育》深度解析:AI如何重塑现代家庭教育模式
硅基打工人
AI人工智能经验分享大数据开源语言模型
引言:家庭教育的困境与AI的破局在数字化与智能化浪潮下,家庭教育面临多重挑战:家长教育能力不足、教育资源分配不均、亲子沟通效率低下、个性化需求难以满足等。清华大学发布的《DeepSeek赋能家庭教育》系列报告(共56页)提出了一种基于人工智能的解决方案,通过深度学习平台DeepSeek,为家庭教育注入科技动能。本文将从技术原理、核心功能、应用场景、伦理安全及未来展望等多维度展开分析。一、DeepS
- Adobe Firefly 技术浅析(三):GANs 的改进
爱研究的小牛
AIGC——图像AIGC—生成对抗网络AIGC机器学习深度学习
生成式对抗网络(GANs)在图像生成领域取得了显著的进展,但原始的GANs在训练稳定性、生成质量以及多样性方面存在一些挑战。AdobeFirefly在其图像生成技术中采用了多种改进的GANs方法,以提高生成图像的质量和多样性。1.条件生成式对抗网络(cGANs)1.1基本原理条件生成式对抗网络(cGANs)通过引入额外的条件信息(如类别标签、文本描述等),使得生成器能够根据这些条件生成特定类型的图
- 云端书签:在iCloud中存储Safari书签的终极指南
2401_85702623
icloudsafari前端
云端书签:在iCloud中存储Safari书签的终极指南在数字化时代,互联网成为了我们获取信息的海洋,而书签则是我们在这海洋中导航的灯塔。Safari浏览器的书签功能帮助我们保存喜爱的网站,但当书签数量日益增多,如何在不同设备间同步它们成了一个挑战。iCloud作为苹果公司提供的云服务,为我们提供了一个完美的解决方案。本文将详细介绍如何在iCloud中存储和同步Safari书签,确保你的灯塔始终照
- 【无标题】采集板设计
weixin_42366388
测试工具
设计包含16片AD9680ADC和XilinxXC7V690FPGA的电路板需要解决高速数据接口、电源管理、时钟同步及PCB布局等关键挑战。**1.系统架构设计**####**核心组件**-**ADC**:16片AD9680(双通道14-bit1GSPS,JESD204B接口)-**FPGA**:XilinxXC7V690T-2FFG1761I(含48个GTX收发器,12.5Gbps/通道)-**
- 敏捷开发在中小团队中的应用与挑战:实战指南与避坑手册
蜡笔小新星
敏捷流程开发语言经验分享
文章目录敏捷开发在中小团队中的应用与挑战:实战指南与避坑手册引言:为什么中小团队更需要敏捷?一、敏捷开发适配中小团队的底层逻辑1.1中小团队的典型特征1.2敏捷开发的价值放大器效应二、敏捷实施的五大实战步骤2.1团队定制化改造(关键!)2.2轻量级工具链搭建2.3迭代节奏控制技巧2.4可视化管理的艺术2.5持续改进机制三、必须跨越的四大死亡陷阱3.1需求镀金综合症3.2站会僵尸化3.3技术债雪球效
- Java程序开发之分布式事务终极方案:Seata原理与实战
微风不留尘
javajava分布式Seatajava入门
一、分布式事务挑战与Seata定位1.CAP理论下的事务困境场景一致性要求可用性要求典型方案支付交易强一致性中等SeataAT/TCC订单创建最终一致高消息事务+Saga库存扣减强一致性高TCC+重试补偿2.Seata架构全景图发起全局事务协调分支事务协调分支事务注册分支注册分支全局提交/回滚
- YOLO11改进-模块-引入多尺度差异融合模块MDFM
一勺汤
YOLOv11模型改进系列深度学习人工智能YOLOYOLOv11目标检测模块改进
遥感变化检测(RSCD)专注于识别在不同时间获取的两幅遥感图像之间发生变化的区域。近年来,卷积神经网络(CNN)在具有挑战性的RSCD任务中展现出了良好的效果。然而,这些方法未能有效地融合双时相特征,也未提取出对后续RSCD任务有益的有用信息。此外,它们在特征聚合中没有考虑多层次特征交互,并且忽略了差异特征与双时相特征之间的关系,从而影响了RSCD的结果。为解决上述问题,本文通过孪生卷积网络提取不
- YOLO优化之扫描融合模块(SimVSS Block)
清风AI
人工智能计算机视觉YOLO目标检测深度学习目标跟踪
研究背景在自动驾驶技术快速发展的背景下,目标检测作为其核心组成部分面临着严峻挑战。驾驶场景中目标尺度和大小的巨大差异,以及视觉特征不显著且易受噪声干扰的问题,对辅助驾驶系统的安全性构成了潜在威胁。传统的卷积神经网络(CNN)虽然在目标检测领域取得了显著进展,但仍存在局限性,如局部关注性导致难以有效检测不同尺度的目标。为克服这些问题,研究人员开始探索将状态空间模型(SSM)引入目标检测领域,以期提高
- 通过数据库网格架构构建现代分布式数据系统
Navicat中国
Navicat技术智库数据库架构分布式navicat信息可视化mongodbredis
在当今微服务驱动的世界中,企业在跨分布式系统管理数据方面面临着越来越多的挑战。数据库网格架构已成为应对这些挑战的强大解决方案,它提供了一种与现代应用架构相匹配的分散式数据管理方法。本文将探讨数据库网格架构的工作原理,以及如何使用PostgreSQL和MongoDB等流行数据库实施该架构。究竟什么是数据库网格架构?数据库网格架构是一种分散的数据基础架构管理方法,不同的数据库作为一个有凝聚力的系统协同
- 机器学习的下一个前沿是因果推理吗?——探索机器学习的未来方向!
真智AI
人工智能机器学习
机器学习的进化:从预测到因果推理机器学习凭借强大的预测能力,已经彻底改变了多个行业。然而,要实现真正的突破,机器学习还需要克服实践和计算上的挑战,特别是在因果推理方面的应用。未来,因果推理或许将成为推动机器学习发展的新前沿。什么是因果推理,它如何与机器学习相关?如果你和我一样没有数学背景,你可能会好奇“因果推理”到底意味着什么?它与机器学习又有什么关系?当我刚开始学习机器学习时,第一次听到“因果推
- TK矩阵:提高多账号管理效率的利器
m0_74891046
矩阵
随着TikTok的火爆,越来越多的人开始利用这个平台进行内容创作和社交互动。无论是个人创作者、品牌方,还是营销公司,TikTok都提供了巨大的机会,但同时也带来了运营上的挑战,尤其是在管理多个账户时。每个账号的维护、内容发布、互动和数据分析,都需要耗费大量的时间和精力。TK矩阵是为了应对这些挑战而推出的一款工具,它为需要操作多个TikTok账号的用户提供了一种更高效、更安全的管理方式。基于云技术和
- 书籍棱面广告投放的创新设计方法.zip
罗博深
本文还有配套的精品资源,点击获取简介:本创新方法将广告技术与传统书籍相结合,采用特殊印刷技术在书籍立体棱面上展示广告。通过材料、涂料的科技应用及光学原理,确保在不同光照下的视觉效果。设计考虑视觉吸引力、技术可行性及用户体验,可能结合AR技术增强互动性。需多方合作实现,包括印刷厂商、材料供应商和广告客户。此技术提供了新的广告展示平台,可能改变出版销售模式,并与数字营销结合。尽管面临技术挑战和成本问题
- 智能编程新时代:DeepSeek加持下的开发工具革新
inscode_013
最新接入DeepSeek-V3模型,点击下载最新版本InsCodeAIIDE标题:智能编程新时代:DeepSeek加持下的开发工具革新在当今快速发展的科技领域,编程工具的智能化已经成为不可阻挡的趋势。随着人工智能技术的不断进步,开发者们迎来了前所未有的机遇和挑战。其中,集成DeepSeek模型的AI开发工具,正以其强大的功能和便捷的操作,引领着编程方式的革命性变革。本文将探讨这种创新工具的应用场景
- 智能化开发新时代:DeepSeek加持下的编程革命
MoonbeamOwl67
最新接入DeepSeek-V3模型,点击下载最新版本InsCodeAIIDE标题:智能化开发新时代:DeepSeek加持下的编程革命在当今快速发展的科技时代,软件开发已经成为推动社会进步的重要动力。然而,对于许多开发者而言,编写高质量的代码仍然是一项充满挑战的任务。从复杂的算法设计到繁琐的调试过程,每一个环节都需要耗费大量的时间和精力。而随着人工智能技术的迅猛发展,一种全新的编程方式正在悄然改变这
- KNN算法性能优化技巧与实战案例
可问 可问春风
算法性能优化
KNN算法性能优化技巧与实战案例K最近邻(KNN)在分类和回归任务中表现稳健,但其计算复杂度高、内存消耗大成为IT项目中的主要瓶颈。以下从算法优化、数据结构、工程实践三方面深入解析性能提升策略,并附典型应用案例。一、核心性能瓶颈维度挑战描述计算复杂度单次预测需计算全部训练样本距离,时间复杂度为(n=样本数,d=特征维度)内存占用需全量存储训练数据,大规模数据集难以加载高维灾难高维数据中距离计算失去
- 基于 KTransformers的DeepSeek-R1 本地部署方案,成本骤降32倍!
爱科技Ai
LLM人工智能
随着DeepSeek-R1模型在全球范围内的流行,越来越多的用户开始在本地尝试部署该模型。然而,高昂的硬件需求和成本让许多公司望而却步。本文将深入探讨DeepSeek-R1部署中的挑战,并介绍一款创新框架KTransformers,它能够显著降低大规模模型部署的成本并提高推理效率,从而帮助更多中小企业有效部署此类高级AI模型。本地部署“成本骤降32倍”,助力R1真正落地「中小企业」中!1.Deep
- PCDN 与边缘计算的结合:未来内容分发的新趋势
yczykjyxgs
pcdn智能路由器
在数字化浪潮中,内容分发面临着前所未有的挑战与机遇。PCDN(P2P内容分发网络)与边缘计算的结合,正逐渐崭露头角,成为未来内容分发的新趋势。PCDN通过P2P技术,利用用户节点的闲置资源进行内容分发,有效减轻了中心服务器的压力,降低了传输成本。然而,在面对实时性要求极高的业务场景时,PCDN仍存在一定局限。边缘计算的出现,为解决这一问题提供了新思路。边缘计算将计算和存储能力下沉到网络边缘,靠近用
- 大模型+智能代理:自动化测试的终极组合?
测试者家园
软件测试质量效能人工智能人工智能软件测试质量效能职场和发展AI赋能智能体LLM
用ChatGPT做软件测试在软件测试领域,自动化测试的目标一直是提高测试效率、减少人工干预、提升缺陷发现率。然而,传统自动化测试仍然面临诸多挑战,例如脚本维护成本高、难以应对动态UI变化、测试数据生成受限,以及难以覆盖复杂业务逻辑。近年来,大模型(LLM,LargeLanguageModel)+智能代理(Agent)的结合,为自动化测试带来了新的可能性。这种“智能测试代理”能够利用大模型的自然语言
- 点亮绿色未来:走进综合能源服务认证
AEMC马广川
能源java前端服务器大数据人工智能
能源,是城市运转的血液,也是社会发展的动力。然而,传统的能源利用方式正面临着资源紧张、环境污染等挑战。如何破解能源困局,构建清洁低碳、安全高效的能源体系?综合能源服务认证,为我们提供了一把开启绿色未来的钥匙。一、认证的意义:为绿色未来保驾护航想象一下,未来的城市,高楼大厦不再是被冰冷的钢筋水泥包裹,而是披上了一层“绿色外衣”。这层“外衣”不仅能遮风挡雨,还能吸收太阳能、风能,为建筑提供清洁能源。而
- 2025年Python生态全景:从AI霸主到量子计算,揭秘其不可替代的技术魅力
南玖yy
python人工智能量子计算
在2025年的技术浪潮中,Python凭借其极简的语法、庞大的生态系统以及跨领域融合能力,依然稳坐编程语言界的“头把交椅”。尽管Java等语言在AI领域发起挑战,但Python通过持续的技术革新和生态扩展,展现出不可撼动的生命力。本文将从技术趋势、行业应用与未来挑战三个维度,解析Python的“常青”密码。一、AI领域的持续主导:生态优势与工具革新Python在AI领域的统治地位仍未动摇。尽管有观
- AI与SDN结合:智能网络的未来之路
不想加班的码小牛
人工智能网络ai
一、引言“网络正在从‘被动响应’走向‘主动思考’。”随着云计算、5G和物联网的爆发式增长,传统网络架构面临灵活性不足、运维成本高等挑战。SDN(软件定义网络)通过控制与转发分离革新了网络管理方式,而AI的引入让SDN从“自动化”迈向“智能化”。二、AI+SDN的技术背景1.1为什么需要AI赋能SDN?传统SDN痛点AI的解决能力流量策略依赖人工规则动态学习流量模式,实时优化策略故障定位耗时(如网络
- DPU的未来:技术趋势与挑战
绿算技术
DPU架构介绍科技gpu算力硬件工程缓存架构
随着数据中心的不断发展,DPU技术也在快速演进。以下是DPU未来的技术趋势与挑战:1.更高性能·支持更高的网络带宽(如400GbE、800GbE)和更低的延迟。2.更广泛的应用·在AI、5G、物联网等领域,DPU的应用将进一步扩展。3.软件生态的完善·开源工具和开发框架的普及,将降低DPU的开发门槛。4.能效优化·在提升性能的同时,进一步降低功耗,满足绿色计算的需求。总结DPU作为一种新兴的数据处
- 数据分布偏移检测:保障模型在生产环境中的稳定性
trust Tomorrow
机器学习python机器学习人工智能深度学习
数据分布偏移检测:保障模型在生产环境中的稳定性引言在机器学习系统从开发环境部署到生产环境的过程中,数据分布偏移问题是影响模型性能的主要挑战之一。当训练数据与生产环境中的数据分布不一致时,即使是经过精心调优的模型也可能表现出明显的性能下降。本文将深入探讨数据分布偏移的检测方法,并提供一套系统化的解决方案,帮助读者构建更加稳健的机器学习系统。1.数据分布偏移问题概述1.1分布偏移的类型数据分布偏移主要
- 如何应对Maven中的依赖导入挑战?
程序员总部
javamaven数据库sql
在软件开发的世界里,Maven作为一个流行的项目管理工具,为开发者提供了便利,特别是在管理依赖方面。不过,在使用Maven的过程中,依赖导包问题常常困扰着很多开发者。这些问题可能会导致项目构建失败、运行时错误,甚至是难以追踪的bug!那么,如何巧妙地解决这些依赖导入问题呢?理解依赖的作用依赖在Maven中的作用非常关键。它们是项目中所需要的库或框架,比如Spring、JUnit等。每个Maven项
- HarmonyNext实战:基于ArkTS的高性能图像处理应用开发
应用开发
引言在HarmonyNext生态系统中,图像处理是一个重要且具有挑战性的领域。本文将深入探讨如何利用ArkTS语言开发一个高性能的图像处理应用,重点介绍图像卷积、边缘检测等核心算法的实现。我们将从理论基础出发,逐步构建一个完整的图像处理应用,并通过优化技巧提升性能。图像处理基础1.1图像表示在数字图像处理中,图像通常被表示为一个二维矩阵,每个元素代表一个像素的灰度值或颜色值。在HarmonyNex
- Java架构设计亿级流量场景下的本地缓存方案选型
我真的不想做程序员
架构设计java架构系统架构缓存java
在当今的互联网时代,亿级流量的应用场景已经司空见惯。无论是大型电商平台的促销活动,还是热门社交应用的日常运营,都可能面临每秒数万甚至数十万的请求流量。在这样的高并发、高流量场景下,系统的性能和稳定性面临着巨大的挑战。本地缓存作为提升系统性能、减轻服务器压力的重要手段,其选型和设计显得尤为重要。本文将探讨在亿级流量场景下,Java架构设计中本地缓存方案的选型策略。一、亿级流量场景下的挑战1.高并发请
- 【网络通信安全】子专栏链接及简介
不羁。。
网络通信安全安全
目录操作系统安全:筑牢网络安全根基网络协议安全:守护数据传输通道Web站点安全开发:打造安全的网络交互平台在数字化浪潮席卷的当下,网络通信已深度融入生活与工作的方方面面,从日常的线上购物、社交互动,到企业间关键业务数据的传输,无一能脱离网络通信的支持。然而,网络空间并非一片净土,随着网络应用的日益复杂多样,网络通信安全面临着前所未有的严峻挑战。恶意软件肆虐、网络攻击手段层出不穷,数据泄露事件时有发
- 【模拟面试】计算机考研复试集训(第二天)
Albert Edison
计算机考研复试高频考点面试考研职场和发展c++数据结构算法操作系统
文章目录前言一、专业面试1、OSI参考模型和TCP/IP模型的主要区别是什么?简述各层功能2、什么是瀑布模型?其优缺点是什么?3、什么是递归?使用时需注意什么?4、监督学习与无监督学习的核心区别是什么?请举例说明典型算法5、你在项目中遇到过哪些技术挑战?是如何解决的?二、英文口语1、Canyoutellusaboutatimeyouworkedinateamandfacedchallenges?H
- 用Python打造AI玩家:挑战2048,谁与争锋
穿梭的编织者
人工智能python
文章目录一、创作背景二、效果图三、准备工作1.安装Chrome和ChromeDriver2.安装Python库四、代码说明1.init_driver函数2.play_2048函数五、完整代码六、改进版本七、主要模块八、核心算法分析1.棋盘状态获取2.位置权重系统3.连续性评估4.单调性评估5.移动模拟系统九、评估系统1.评估标准2.决策机制十、性能优化1.延迟控制2.错误处理十一、完整代码编
- 计算机视觉算法实战——驾驶员玩手机检测(主页有源码)
喵了个AI
计算机视觉实战项目计算机视觉算法智能手机
✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨✨个人主页欢迎您的访问✨期待您的三连✨1.领域简介:玩手机检测的重要性与技术挑战驾驶员玩手机检测是智能交通安全领域的核心课题。根据NHTSA数据,美国每年因手机使用导致的交通事故超过3000起,中国公安部的统计显示开车使用手机的事故率是正常驾驶的23倍。该技术通过实时监测驾驶员手部动作和视线方向,识别非法使用手机行为,在以
- java线程Thread和Runnable区别和联系
zx_code
javajvmthread多线程Runnable
我们都晓得java实现线程2种方式,一个是继承Thread,另一个是实现Runnable。
模拟窗口买票,第一例子继承thread,代码如下
package thread;
public class ThreadTest {
public static void main(String[] args) {
Thread1 t1 = new Thread1(
- 【转】JSON与XML的区别比较
丁_新
jsonxml
1.定义介绍
(1).XML定义
扩展标记语言 (Extensible Markup Language, XML) ,用于标记电子文件使其具有结构性的标记语言,可以用来标记数据、定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言。 XML使用DTD(document type definition)文档类型定义来组织数据;格式统一,跨平台和语言,早已成为业界公认的标准。
XML是标
- c++ 实现五种基础的排序算法
CrazyMizzz
C++c算法
#include<iostream>
using namespace std;
//辅助函数,交换两数之值
template<class T>
void mySwap(T &x, T &y){
T temp = x;
x = y;
y = temp;
}
const int size = 10;
//一、用直接插入排
- 我的软件
麦田的设计者
我的软件音乐类娱乐放松
这是我写的一款app软件,耗时三个月,是一个根据央视节目开门大吉改变的,提供音调,猜歌曲名。1、手机拥有者在android手机市场下载本APP,同意权限,安装到手机上。2、游客初次进入时会有引导页面提醒用户注册。(同时软件自动播放背景音乐)。3、用户登录到主页后,会有五个模块。a、点击不胫而走,用户得到开门大吉首页部分新闻,点击进入有新闻详情。b、
- linux awk命令详解
被触发
linux awk
awk是行处理器: 相比较屏幕处理的优点,在处理庞大文件时不会出现内存溢出或是处理缓慢的问题,通常用来格式化文本信息
awk处理过程: 依次对每一行进行处理,然后输出
awk命令形式:
awk [-F|-f|-v] ‘BEGIN{} //{command1; command2} END{}’ file
[-F|-f|-v]大参数,-F指定分隔符,-f调用脚本,-v定义变量 var=val
- 各种语言比较
_wy_
编程语言
Java Ruby PHP 擅长领域
- oracle 中数据类型为clob的编辑
知了ing
oracle clob
public void updateKpiStatus(String kpiStatus,String taskId){
Connection dbc=null;
Statement stmt=null;
PreparedStatement ps=null;
try {
dbc = new DBConn().getNewConnection();
//stmt = db
- 分布式服务框架 Zookeeper -- 管理分布式环境中的数据
矮蛋蛋
zookeeper
原文地址:
http://www.ibm.com/developerworks/cn/opensource/os-cn-zookeeper/
安装和配置详解
本文介绍的 Zookeeper 是以 3.2.2 这个稳定版本为基础,最新的版本可以通过官网 http://hadoop.apache.org/zookeeper/来获取,Zookeeper 的安装非常简单,下面将从单机模式和集群模式两
- tomcat数据源
alafqq
tomcat
数据库
JNDI(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。
没有使用JNDI时我用要这样连接数据库:
03. Class.forName("com.mysql.jdbc.Driver");
04. conn
- 遍历的方法
百合不是茶
遍历
遍历
在java的泛
- linux查看硬件信息的命令
bijian1013
linux
linux查看硬件信息的命令
一.查看CPU:
cat /proc/cpuinfo
二.查看内存:
free
三.查看硬盘:
df
linux下查看硬件信息
1、lspci 列出所有PCI 设备;
lspci - list all PCI devices:列出机器中的PCI设备(声卡、显卡、Modem、网卡、USB、主板集成设备也能
- java常见的ClassNotFoundException
bijian1013
java
1.java.lang.ClassNotFoundException: org.apache.commons.logging.LogFactory 添加包common-logging.jar2.java.lang.ClassNotFoundException: javax.transaction.Synchronization
- 【Gson五】日期对象的序列化和反序列化
bit1129
反序列化
对日期类型的数据进行序列化和反序列化时,需要考虑如下问题:
1. 序列化时,Date对象序列化的字符串日期格式如何
2. 反序列化时,把日期字符串序列化为Date对象,也需要考虑日期格式问题
3. Date A -> str -> Date B,A和B对象是否equals
默认序列化和反序列化
import com
- 【Spark八十六】Spark Streaming之DStream vs. InputDStream
bit1129
Stream
1. DStream的类说明文档:
/**
* A Discretized Stream (DStream), the basic abstraction in Spark Streaming, is a continuous
* sequence of RDDs (of the same type) representing a continuous st
- 通过nginx获取header信息
ronin47
nginx header
1. 提取整个的Cookies内容到一个变量,然后可以在需要时引用,比如记录到日志里面,
if ( $http_cookie ~* "(.*)$") {
set $all_cookie $1;
}
变量$all_cookie就获得了cookie的值,可以用于运算了
- java-65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
bylijinnan
java
参考了网上的http://blog.csdn.net/peasking_dd/article/details/6342984
写了个java版的:
public class Print_1_To_NDigit {
/**
* Q65.输入数字n,按顺序输出从1最大的n位10进制数。比如输入3,则输出1、2、3一直到最大的3位数即999
* 1.使用字符串
- Netty源码学习-ReplayingDecoder
bylijinnan
javanetty
ReplayingDecoder是FrameDecoder的子类,不熟悉FrameDecoder的,可以先看看
http://bylijinnan.iteye.com/blog/1982618
API说,ReplayingDecoder简化了操作,比如:
FrameDecoder在decode时,需要判断数据是否接收完全:
public class IntegerH
- js特殊字符过滤
cngolon
js特殊字符js特殊字符过滤
1.js中用正则表达式 过滤特殊字符, 校验所有输入域是否含有特殊符号function stripscript(s) { var pattern = new RegExp("[`~!@#$^&*()=|{}':;',\\[\\].<>/?~!@#¥……&*()——|{}【】‘;:”“'。,、?]"
- hibernate使用sql查询
ctrain
Hibernate
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import org.hibernate.Hibernate;
import org.hibernate.SQLQuery;
import org.hibernate.Session;
import org.hibernate.Transa
- linux shell脚本中切换用户执行命令方法
daizj
linuxshell命令切换用户
经常在写shell脚本时,会碰到要以另外一个用户来执行相关命令,其方法简单记下:
1、执行单个命令:su - user -c "command"
如:下面命令是以test用户在/data目录下创建test123目录
[root@slave19 /data]# su - test -c "mkdir /data/test123" 
- 好的代码里只要一个 return 语句
dcj3sjt126com
return
别再这样写了:public boolean foo() { if (true) { return true; } else { return false;
- Android动画效果学习
dcj3sjt126com
android
1、透明动画效果
方法一:代码实现
public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState)
{
View rootView = inflater.inflate(R.layout.fragment_main, container, fals
- linux复习笔记之bash shell (4)管道命令
eksliang
linux管道命令汇总linux管道命令linux常用管道命令
转载请出自出处:
http://eksliang.iteye.com/blog/2105461
bash命令执行的完毕以后,通常这个命令都会有返回结果,怎么对这个返回的结果做一些操作呢?那就得用管道命令‘|’。
上面那段话,简单说了下管道命令的作用,那什么事管道命令呢?
答:非常的经典的一句话,记住了,何为管
- Android系统中自定义按键的短按、双击、长按事件
gqdy365
android
在项目中碰到这样的问题:
由于系统中的按键在底层做了重新定义或者新增了按键,此时需要在APP层对按键事件(keyevent)做分解处理,模拟Android系统做法,把keyevent分解成:
1、单击事件:就是普通key的单击;
2、双击事件:500ms内同一按键单击两次;
3、长按事件:同一按键长按超过1000ms(系统中长按事件为500ms);
4、组合按键:两个以上按键同时按住;
- asp.net获取站点根目录下子目录的名称
hvt
.netC#asp.nethovertreeWeb Forms
使用Visual Studio建立一个.aspx文件(Web Forms),例如hovertree.aspx,在页面上加入一个ListBox代码如下:
<asp:ListBox runat="server" ID="lbKeleyiFolder" />
那么在页面上显示根目录子文件夹的代码如下:
string[] m_sub
- Eclipse程序员要掌握的常用快捷键
justjavac
javaeclipse快捷键ide
判断一个人的编程水平,就看他用键盘多,还是鼠标多。用键盘一是为了输入代码(当然了,也包括注释),再有就是熟练使用快捷键。 曾有人在豆瓣评
《卓有成效的程序员》:“人有多大懒,才有多大闲”。之前我整理了一个
程序员图书列表,目的也就是通过读书,让程序员变懒。 写道 程序员作为特殊的群体,有的人可以这么懒,懒到事情都交给机器去做,而有的人又可
- c++编程随记
lx.asymmetric
C++笔记
为了字体更好看,改变了格式……
&&运算符:
#include<iostream>
using namespace std;
int main(){
int a=-1,b=4,k;
k=(++a<0)&&!(b--
- linux标准IO缓冲机制研究
音频数据
linux
一、什么是缓存I/O(Buffered I/O)缓存I/O又被称作标准I/O,大多数文件系统默认I/O操作都是缓存I/O。在Linux的缓存I/O机制中,操作系统会将I/O的数据缓存在文件系统的页缓存(page cache)中,也就是说,数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。1.缓存I/O有以下优点:A.缓存I/O使用了操作系统内核缓冲区,
- 随想 生活
暗黑小菠萝
生活
其实账户之前就申请了,但是决定要自己更新一些东西看也是最近。从毕业到现在已经一年了。没有进步是假的,但是有多大的进步可能只有我自己知道。
毕业的时候班里12个女生,真正最后做到软件开发的只要两个包括我,PS:我不是说测试不好。当时因为考研完全放弃找工作,考研失败,我想这只是我的借口。那个时候才想到为什么大学的时候不能好好的学习技术,增强自己的实战能力,以至于后来找工作比较费劲。我
- 我认为POJO是一个错误的概念
windshome
javaPOJO编程J2EE设计
这篇内容其实没有经过太多的深思熟虑,只是个人一时的感觉。从个人风格上来讲,我倾向简单质朴的设计开发理念;从方法论上,我更加倾向自顶向下的设计;从做事情的目标上来看,我追求质量优先,更愿意使用较为保守和稳妥的理念和方法。
&