2018-09-26

算法

二分查找

def binary_search(list,item):
    low =0
    high = len(list)-1
    while(low<=high):
        mid = (low + high)//2
        guess = list[mid]
        if guess == item:
            return mid
        if guess < item:
            high = mid-1
        else:
            low = mid+1
    return None
l = [2,4,6,8,10]
x = binary_search(l,6)
if x==None:
    print("列表中无此数")
else:
    print('此数在列表中的第%s位'%x)

运行结果

此数在列表中的第2位

选择排序

#选择排序
def findSmallest(arr):
    smallest = arr[0]
    smallest_index = 0
    for i in range(1, len(arr)):
        if arr[i]

运行结果

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

快速排序

def quicksort(arr):
    if len(arr)<2:
        return arr
    left = []
    right =[]
    pivot = arr[0]
    for i in range(1,len(arr)):
        if arr[i]
def quicksort(arr):
    if len(arr) < 2:
        return arr
    else:
        pivot = arr[0]
        less = [i for i in arr[1:] if i <=pivot]
        greater = [i for i in arr[1:] if i > pivot]
        return quicksort(less) + [pivot] + quicksort(greater)

运行结果

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

广度优先搜索

#实现图
graph = {}
graph["you"] = ["alice","bob","claire"]
graph["bob"] = ["anuj","peggy"]
graph["alice"] = ["peggy"]
graph["claire"] = ["thom","jonny"]
graph["anuj"] = []
graph["peggy"] = []
graph["thom"] = []
graph["jonny"] = []


#创建一个队列
from collections import deque
search_queue = deque()  #创建一个队列
search_queue +=graph["you"]   #将你的邻居都加入到这个搜索队列中


#广度优先搜索
def bfsearch(name):
    search_queue = deque()
    search_queue += graph[name]
    searched = []          #该列表用于记录检查过的人
    while search_queue:
        person = search_queue.popleft()
        if not person in searched:    #仅当这个人没检查过时才检查
            if person_is_seller(person):
                print(person + " is a mango seller!")
                return True
            else:
                search_queue += graph[person]
                searched.append(person)     #将这个人标记为检查过
    return False

def person_is_seller(name):
    return name[-1] == 'm'

bfsearch("you")

运行结果

thom is a mango seller!

深度优先搜索

#图
graph = {}
graph["you"] = ["alice","bob","claire"]
graph["bob"] = ["anuj","peggy"]
graph["alice"] = ["peggy"]
graph["claire"] = ["thom","jonny"]
graph["anuj"] = []
graph["peggy"] = []
graph["thom"] = []
graph["jonny"] = []
#栈类
class SStack():          #基于顺序表技术实现的栈类
    def __init__(self):  #用list对象_elems存储栈中元素
        self._elems = []

    def is_empty(self):
        return self._elems == []

    def top(self):
        if self._elems == []:
            print("栈为空")
        return self._elems[-1]

    def push(self,elem):
        self._elems.append(elem)

    def pop(self):
        if self._elems == []:
            print("栈为空")
        return self._elems.pop()

st1 = SStack()
#深度优先搜索
def person_is_seller(name):
    return name[-1] == 'm'

def dfsearch(name):
    st = SStack()
    searched = []
    if graph[name]!=[]:
        for i in graph[name]:
            st.push(i)
    while not st.is_empty():
        person = st.pop()
        if not person in searched:
            if person_is_seller(person):
                print(person + " is a mango seller!")
                return True
        searched.append(person)
        if graph[person]!=[]:
            for j in graph[person]:
                st.push(j)
    return False
dfsearch("you")
#栈实现深度优先遍历
def dfsearch1(name):
    st = SStack()
    searched = []
    print(name)
    if graph[name]!=[]:
        for i in graph[name]:
            st.push(i)
        while not st.is_empty():
            person = st.pop()
            if not person in searched:
                print(person)
            searched.append(person)
            if graph[person]!=[]:
                for j in graph[person]:
                    st.push(j)

dfsearch1("you")

运行结果

thom is a mango seller!
you
claire
jonny
thom
bob
peggy
anuj
alice

狄克斯特拉算法

#狄克斯特拉算法

#表示整个图的散列表
graph = {}
graph["start"] = {}
graph["start"]["a"] = 6
graph["start"]["b"] = 2

graph["a"] = {}
graph["a"]["fin"] = 1

graph["b"] = {}
graph["b"]["a"] = 3
graph["b"]["fin"] = 5

graph["fin"] = {}

#创建开销表
infinity = float('inf')
costs = {}
costs["a"] = 6
costs["b"] = 2
costs["fin"] = infinity
#创建存储父节点的散列表
parents = {}
parents["a"] = "start"
parents["b"] = "start"
parents["fin"] = None

#存储处理过的节点
processed = []

def find_lowest_cost_node(costs):
    lowest_cost = float('inf')
    lowest_cost_node = None
    for node in costs:           #遍历所有节点
        cost = costs[node]
        if cost < lowest_cost and node not in processed:    #如果当前节点的开销更低且位处理过
            lowest_cost = cost                            #就将其视为开销最低的节点
            lowest_cost_node = node
    return lowest_cost_node

node = find_lowest_cost_node(costs)        #在未处理的节点中找出开销最小的节点
while node is not None:
    print(node)
    cost = costs[node]
    neighbors = graph[node]
    for n in neighbors.keys():        #遍历当前节点的所有邻居
        new_cost = cost + neighbors[n]
        if costs[n]>new_cost:         #如果经当前节点千万该邻居更近
            costs[n]=new_cost         #就更新该邻居的开销
            parents[n]=node           #同时将该邻居的父节点设置为当前节点
    processed.append(node)        #将当前节点标记为处理过
    node = find_lowest_cost_node(costs)    #找出接下来要处理的节点,并循环

运行结果

b
a
fin

贪婪算法

#创建一个列表,其中包含要覆盖的州
states_needed = set(["mt", "wa", "or", "id", "nv", "ut", "ca","az"])     #转换成集合
#可供选择地广播台清单
stations = {}
stations["kone"] = set(["id", "nv", "ut"])
stations["ktwo"] = set(["wa", "id", "mt"])
stations["kthree"] = set(["or", "nv", "ca"])
stations["kfour"] = set(["nv", "ut"])
stations["kfive"] = set(["ca", "az"])
#创建一个集合来存储最终选择地广播台
final_stations = set()
while states_needed:
    best_station = None
    states_covered = set()   #包含该广播台覆盖的所有未覆盖的州
    for station, states_for_station in stations.items():
        covered = states_needed & states_for_station  #计算交集
        if len(covered) > len(states_covered):
            best_station = station
            states_covered = covered
    states_needed -= states_covered
    final_stations.add(best_station)

print(final_stations)

运行结果

{'kfive', 'kthree', 'ktwo', 'kone'}

你可能感兴趣的:(2018-09-26)