前言:最近这段时比较忙,抽空写的这篇总结,该篇文章是继上一篇深入理解锁的实现原理(一)的补充,希望能对大家有所帮助~
Reentrantlock锁的实现原理:
基于AQS实现定义源码:
public abstract class AbstractQueuedSynchronizer extends
AbstractOwnableSynchronizer implements java.io.Serializable {
//等待队列的头节点
private transient volatile Node head;
//等待队列的尾节点
private transient volatile Node tail;
//同步状态
private volatile int state;
protected final int getState() {
return state;
}
protected final void setState(int newState) {
state = newState;
}
...
}
AQS的实现原理:
队列同步器AbstractQueueSynchronized,是用来构建锁或者其他同步组件的基础架构,内部使用一个int成员变量表示同步状态,通过内置的FIFO队列来完成资源获取线程的排队工作,其中内部状态state,等待队列的头结点head和尾节点tail都是通过volatile修饰来保证多线程之间的可见。子类重写tryAcquire和tryRelease方法通过CAS指令修改状态变量state
概述:AQS内部会保存一个状态变量state,通过CAS修改该变量的值,修改成功的线程表示获取到该锁,没有修改成功,或者发现状态state已经是加锁状态,则通过一个Waiter对象封装线程,添加到等待队列中,并挂起等待被唤醒内置FIFO队列:
源码如下:
static final class Node {
static final Node SHARED = new Node();
static final Node EXCLUSIVE = null;
static final int CANCELLED = 1;
static final int SIGNAL = -1;
static final int CONDITION = -2;
static final int PROPAGATE = -3;
volatile int waitStatus;
volatile Node prev;
volatile Node next;
volatile Thread thread;
Node nextWaiter;
...
}
解析:
第一个默认是head节点,是一个空节点,可以理解成代表当前持有锁的线程,每当有线程竞争失败,都是插入到队列的尾节点,tail节点始终指向队列中的最后一个元素。每个节点中, 除了存储了当前线程,前后节点的引用以外,还有一个waitStatus变量,用于描述节点当前的状态。多线程并发执行时,队列中会有多个节点存在,这个waitStatus其实代表对应线程的状态:有的线程可能获取锁因为某些原因放弃竞争;有的线程在等待满足条件,满足之后才能执行等等。一共有4中状态:
- CANCELLED 取消状态
- SIGNAL 等待触发状态
- CONDITION 等待条件状态
- PROPAGATE 状态需要向后传播
等待队列是FIFO先进先出,只有前一个节点的状态为SIGNAL时,当前节点的线程才能被挂起。
线程获取锁的过程:
- 线程A执行CAS执行成功,state值被修改并返回true,线程A继续执行。
- 线程A执行CAS指令失败,说明线程B也在执行CAS指令且成功,这种情况下线程A会执行步骤3。
- 生成新Node节点node,并通过CAS指令插入到等待队列的队尾(同一时刻可能会有多个Node节点插入到等待队列中),如果tail节点为空,则将head节点指向一个空节点(代表线程B)
- node插入到队尾后,该线程不会立马挂起,会进行自旋操作。因为在node的插入过程,线程B(即之前没有阻塞的线程)可能已经执行完成,所以要判断该node的前一个节点pred是否为head节点(代表线程B),如果pred == head,表明当前节点是队列中第一个“有效的”节点,因此再次尝试tryAcquire获取锁,
4.1 如果成功获取到锁,表明线程B已经执行完成,线程A不需要挂起。
4.2. 如果获取失败,表示线程B还未完成,至少还未修改state值。进行步骤5。 - 前面我们已经说过只有前一个节点pred的线程状态为SIGNAL时,当前节点的线程才能被挂起。
5.1. 如果pred的waitStatus == 0,则通过CAS指令修改waitStatus为Node.SIGNAL。
5.2. 如果pred的waitStatus > 0,表明pred的线程状态CANCELLED,需从队列中删除。
5.3. 如果pred的waitStatus为Node.SIGNAL,则通过LockSupport.park()方法把线程A挂起,并等待被唤醒,被唤醒后进入步骤6 - 线程每次被唤醒时,都要进行中断检测,如果发现当前线程被中断,那么抛出InterruptedException并退出循环。从无限循环的代码可以看出,并不是被唤醒的线程一定能获得锁,必须调用tryAccquire重新竞争,因为锁是非公平的,有可能被新加入的线程获得,从而导致刚被唤醒的线程再次被阻塞,这个细节充分体现了“非公平”的精髓
线程释放锁的过程:
- 如果头结点head的waitStatus值为-1,则用CAS指令重置为0;
- 找到waitStatus值小于0的节点s,通过LockSupport.unpark(s.thread)唤醒线程。
CAS的实现原理:
Compare and Swap,比较并替换,通过unsafe类的compareAndSwap方法实现。
- Unsafe,是CAS的核心类,由于Java方法无法直接访问底层系统,需要通过本地(native)方法来访问,Unsafe相当于一个后门,基于该类可以直接操作特定内存的数据。
- Unsafe类中的compareAndSwap方法:
public final native boolean compareAndSwapInt(
Object paramObject, long paramLong, int paramInt1, int paramInt2);
各参数的含义:
- paramObject:要修改的对象
- paramLong:对象中要修改变量的偏移量
- paramInt1:修改之前的值
- paramInt2:预想修改后的值
系统级别上的实现:
- Linux x86:Atomin::cmpxchg方法源码如下:
inline jint Atomic::cmpxchg (jint exchange_value, volatile jint* dest,
jint compare_value) {
int mp = os::is_MP();
__asm__ volatile (LOCK_IF_MP(%4) "cmpxchgl %1,(%3)"
: "=a" (exchange_value)
: "r" (exchange_value), "a" (compare_value), "r" (dest), "r" (mp)
: "cc", "memory");
return exchange_value;
}
- Windows x86:
inline jint Atomic::cmpxchg (jint exchange_value, volatile jint* dest, jint compare_value) {
int mp = os::isMP(); //判断是否是多处理器
_asm {
mov edx, dest
mov ecx, exchange_value
mov eax, compare_value
LOCK_IF_MP(mp)
cmpxchg dword ptr [edx], ecx
}
}
// Adding a lock prefix to an instruction on MP machine
// VC++ doesn't like the lock prefix to be on a single line
// so we can't insert a label after the lock prefix.
// By emitting a lock prefix, we can define a label after it.
#define LOCK_IF_MP(mp) __asm cmp mp, 0 \
__asm je L0 \
__asm _emit 0xF0 \
__asm L0:
LOCK_IF_MP根据当前系统是否为多核处理器决定是否为cmpxchg指令添加lock前缀。
- 如果是多处理器,为cmpxchg指令添加lock前缀。
- 反之,就省略lock前缀。(单处理器会不需要lock前缀提供的内存屏障效果)
CAS存在的问题:ABA问题
问题:如果变量V初次读取的时候是A,并且在准备赋值的时候检查到它仍然是A,那能说明它的值没有被其他线程修改过了吗?
如果在这段期间曾经被改成B,然后又改回A,那CAS操作就会误认为它从来没有被修改过。针对这种情况,java并发包中提供了一个带有标记的原子引用类AtomicStampedReference,它可以通过控制变量值的版本来保证CAS的正确性。
Reentrantlock非公平锁的实现:
在非公平锁中,每当线程执行lock方法时,都尝试利用CAS把state从0设置为1
竞争过程:
- 线程A和B同时执行CAS指令,假设线程A成功,线程B失败,则表明线程A成功获取锁,并把同步器中的exclusiveOwnerThread设置为线程A。
- 竞争失败的线程B,在nonfairTryAcquire方法中,会再次尝试获取锁,Doug lea会在多处尝试重新获取锁,应该是在这段时间如果线程A释放锁,线程B就可以直接获取锁而不用挂起。完
公平锁的实现:
在公平锁中,每当线程执行lock方法时,如果同步器的队列中有线程在等待,则直接加入到队列中.
条件变量Condition:
源码如下:
public class ConditionObject implements Condition, java.io.Serializable {
/** First node of condition queue. */
private transient Node firstWaiter;
/** Last node of condition queue. */
private transient Node lastWaiter;
public final void signal() {}
public final void signalAll() {}
public final void awaitUninterruptibly() {}
public final void await() throws InterruptedException {}
}
- Synchronized中,所有的线程都在同一个object的条件队列上等待。而ReentrantLock中,每个condition都维护了一个条件队列。
- 每一个Lock可以有任意数据的Condition对象,Condition是与Lock绑定的,所以就有Lock的公平性特性:如果是公平锁,线程为按照FIFO的顺序从Condition.await中释放,如果是非公平锁,那么后续的锁竞争就不保证FIFO顺序了。
- Condition接口定义的方法,await对应于Object.wait,signal对应于Object.notify,signalAll对应于Object.notifyAll。特别说明的是Condition的接口改变名称就是为了避免与Object中的wait/notify/notifyAll的语义和使用上混淆。
await实现逻辑:
- 将线程A加入到条件等待队列中,如果最后一个节点是取消状态,则从对列中删除。
- 线程A释放锁,实质上是线程A修改AQS的状态state为0,并唤醒AQS等待队列中的线程B,线程B被唤醒后,尝试获取锁,接下去的过程就不重复说明了。
- 线程A释放锁并唤醒线程B之后,如果线程A不在AQS的同步队列中,线程A将通过LockSupport.park进行挂起操作。
- 随后,线程A等待被唤醒,当线程A被唤醒时,会通过acquireQueued方法竞争锁,如果失败,继续挂起。如果成功,线程A从await位置恢复。
signal实现逻辑:
- 接着上述场景,线程B执行了signal方法,取出条件队列中的第一个非CANCELLED节点线程,即线程A。另外,signalAll就是唤醒条件队列中所有非CANCELLED节点线程。遇到CANCELLED线程就需要将其从队列中删除。
- 通过CAS修改线程A的waitStatus为0,表示该节点已经不是等待条件状态,并将线程A插入到AQS的等待队列中。
- 唤醒线程A,线程A和别的线程进行锁的竞争。
总结:
- ReentrantLock提供了内置锁类似的功能和内存语义。
- 此外,ReetrantLock还提供了其它功能,包括定时的锁等待、可中断的锁等待、公平性、以及实现非块结构的加锁、Condition,对线程的等待和唤醒等操作更加灵活,一个ReentrantLock可以有多个Condition实例,所以更有扩展性,不过ReetrantLock需要显示的获取锁,并在finally中释放锁,否则后果很严重。
- ReentrantLock在性能上似乎优于Synchronized,其中在jdk1.6中略有胜出,在1.5中是远远胜出。那么为什么不放弃内置锁,并在新代码中都使用ReetrantLock?
- 在java1.5中, 内置锁与ReentrantLock相比有例外一个优点:在线程转储中能给出在哪些调用帧中获得了哪些锁,并能够检测和识别发生死锁的线程。Reentrant的非块状特性任然意味着,获取锁的操作不能与特定的栈帧关联起来,而内置锁却可以。
- 因为内置锁时JVM的内置属性,所以未来更可能提升synchronized而不是ReentrantLock的性能。例如对线程封闭的锁对象消除优化,通过增加锁粒度来消除内置锁的同步。
参考资料:《并发编程的艺术》、博客