Move_base主要代码核心是 executeCb(); executeCycle(); planThread()三个函数。
首先是move_base的构造函数,主要是设置一些配置参数和数据成员的初始化,有很多NodeHandle。分别是nh, action_nh, simple_nh,源码如下
MoveBase::MoveBase(tf2_ros::Buffer& tf) :
// 初始化一些参数
tf_(tf),
as_(NULL),
planner_costmap_ros_(NULL), controller_costmap_ros_(NULL),
bgp_loader_("nav_core", "nav_core::BaseGlobalPlanner"),
blp_loader_("nav_core", "nav_core::BaseLocalPlanner"),
recovery_loader_("nav_core", "nav_core::RecoveryBehavior"),
planner_plan_(NULL), latest_plan_(NULL), controller_plan_(NULL),
runPlanner_(false), setup_(false), p_freq_change_(false), c_freq_change_(false), new_global_plan_(false)
ros::NodeHandle private_nh("~"); //private_nh的命名空间应该是 move_base/node_name(move_base?)
ros::NodeHandle nh; //nh在的命名空间就是 /move_base
//创建move_baseActionServer,回调函数是executeCb
as_ = new MoveBaseActionServer(ros::NodeHandle(), "move_base", boost::bind(&MoveBase::executeCb, this, _1), false);
//读取配置的一些参数
private_nh.param("base_global_planner", global_planner, std::string("navfn/NavfnROS"));
private_nh.param("base_local_planner", local_planner, std::string("base_local_planner/TrajectoryPlannerROS"));
private_nh.param("global_costmap/robot_base_frame", robot_base_frame_, std::string("base_link"));
private_nh.param("global_costmap/global_frame", global_frame_, std::string("map"));
private_nh.param("planner_frequency", planner_frequency_, 0.0);
private_nh.param("controller_frequency", controller_frequency_, 20.0);
private_nh.param("planner_patience", planner_patience_, 5.0);
private_nh.param("controller_patience", controller_patience_, 15.0);
private_nh.param("max_planning_retries", max_planning_retries_, -1); // disabled by default
private_nh.param("oscillation_timeout", oscillation_timeout_, 0.0);
private_nh.param("oscillation_distance", oscillation_distance_, 0.5);
// parameters of make_plan service
private_nh.param("make_plan_clear_costmap", make_plan_clear_costmap_, true);
private_nh.param("make_plan_add_unreachable_goal", make_plan_add_unreachable_goal_, true);
//set up plan triple buffer 三个路径规划器产生的向量分别保存在planner_plan,
//latest_plan,controller_plan中。传递顺序是planner->latest->controller;
planner_plan_ = new std::vector<geometry_msgs::PoseStamped>();
latest_plan_ = new std::vector<geometry_msgs::PoseStamped>();
controller_plan_ = new std::vector<geometry_msgs::PoseStamped>();
//set up the planner's thread 开启路径规划线程
planner_thread_ = new boost::thread(boost::bind(&MoveBase::planThread, this));
//for commanding the base 发布控制速度到cmd_vel
vel_pub_ = nh.advertise<geometry_msgs::Twist>("cmd_vel", 1);
current_goal_pub_ = private_nh.advertise<geometry_msgs::PoseStamped>("current_goal", 0 );
//发布导航点信息
ros::NodeHandle action_nh("move_base");
action_goal_pub_ = action_nh.advertise<move_base_msgs::MoveBaseActionGoal>("goal", 1);
//这个simple_goal代码注释是说可以通过posestamp发送goal,对rviz等工具有用,
//可能是rviz中点击那个2D Navigation也可以进行导航的原因(猜测)
ros::NodeHandle simple_nh("move_base_simple");
goal_sub_ = simple_nh.subscribe<geometry_msgs::PoseStamped>("goal", 1, boost::bind(&MoveBase::goalCB, this, _1));
//设置代价地图的一些参数,有默认值
private_nh.param("local_costmap/inscribed_radius", inscribed_radius_, 0.325);
private_nh.param("local_costmap/circumscribed_radius", circumscribed_radius_, 0.46);
private_nh.param("clearing_radius", clearing_radius_, circumscribed_radius_);
private_nh.param("conservative_reset_dist", conservative_reset_dist_, 3.0);
private_nh.param("shutdown_costmaps", shutdown_costmaps_, false);
private_nh.param("clearing_rotation_allowed", clearing_rotation_allowed_, true);
private_nh.param("recovery_behavior_enabled", recovery_behavior_enabled_, true);
路径规划代价地图话题,并且初始化(不过还不太懂这是干啥的。。。)
查下ros wiki的costmap_2DROS函数(现在在家进wiki进不去。。)
planner_costmap_ros_ = new costmap_2d::Costmap2DROS("global_costmap", tf_);
planner_costmap_ros_->pause();
try {
planner_ = bgp_loader_.createInstance(global_planner);
planner_->initialize(bgp_loader_.getName(global_planner), planner_costmap_ros_);
} catch (const pluginlib::PluginlibException& ex) {
ROS_FATAL("Failed to create the %s planner, are you sure it is properly registered and that the containing library is built? Exception: %s", global_planner.c_str(), ex.what());
exit(1);
}
除了planner_costmap_ros之外还有controller_costmap_ros,和其一样。
然后就是开始更新这两种代价地图:
planner_costmap_ros_->start();
controller_costmap_ros_->start();
分别定义路径规划的服务和清除代价地图的服务,回调函数分别是planservice和clearcostmapService.
//advertise a service for getting a plan
make_plan_srv_ = private_nh.advertiseService("make_plan", &MoveBase::planService, this);
//advertise a service for clearing the costmaps
clear_costmaps_srv_ = private_nh.advertiseService("clear_costmaps", &MoveBase::clearCostmapsService, this);
构造函数中还有一些状态的设置和恢复行为等。
//if we shutdown our costmaps when we're deactivated... we'll do that now
if(shutdown_costmaps_){
ROS_DEBUG_NAMED("move_base","Stopping costmaps initially");
planner_costmap_ros_->stop();
controller_costmap_ros_->stop();
}
//load any user specified recovery behaviors, and if that fails load the defaults 恢复行为
if(!loadRecoveryBehaviors(private_nh)){
loadDefaultRecoveryBehaviors();
}
//initially, we'll need to make a plan
state_ = PLANNING;
//we'll start executing recovery behaviors at the beginning of our list
recovery_index_ = 0;
//we're all set up now so we can start the action server 开启服务器
as_->start();
dsrv_ = new dynamic_reconfigure::Server<move_base::MoveBaseConfig>(ros::NodeHandle("~"));
dynamic_reconfigure::Server<move_base::MoveBaseConfig>::CallbackType cb = boost::bind(&MoveBase::reconfigureCB, this, _1, _2);
dsrv_->setCallback(cb);
以上就是move_base的构造函数。
创建的MoveBaseActionServer的回调函数是executeCb,因此首先看一下executeCb 具体如下:
首先是检查四元数是否合法,非法直接返回
void MoveBase::executeCb(const move_base_msgs::MoveBaseGoalConstPtr& move_base_goal)
{
if(!isQuaternionValid(move_base_goal->target_pose.pose.orientation)){
as_->setAborted(move_base_msgs::MoveBaseResult(), "Aborting on goal because it was sent with an invalid quaternion");
return;
}
其中isQuaternionValid函数如下:
bool MoveBase::isQuaternionValid(const geometry_msgs::Quaternion& q){
//检查四元数中是否有nans或者是infs,如果有返回false
if(!std::isfinite(q.x) || !std::isfinite(q.y) || !std::isfinite(q.z) || !std::isfinite(q.w)){
ROS_ERROR("Quaternion has nans or infs... discarding as a navigation goal");
return false;
}
tf2::Quaternion tf_q(q.x, q.y, q.z, q.w);
//next, we need to check if the length of the quaternion is close to zero 检查四元数是否趋近于0
if(tf_q.length2() < 1e-6){
ROS_ERROR("Quaternion has length close to zero... discarding as navigation goal");
return false;
}
//next, we'll normalize the quaternion and check that it transforms the vertical vector correctly
//对四元数进行规范化,检测z轴是否垂直,因为是小车,只能绕着z轴旋转。
tf_q.normalize();
tf2::Vector3 up(0, 0, 1);
double dot = up.dot(up.rotate(tf_q.getAxis(), tf_q.getAngle()));
if(fabs(dot - 1) > 1e-3){
ROS_ERROR("Quaternion is invalid... for navigation the z-axis of the quaternion must be close to vertical.");
return false;
}
return true;
}
然后是进行坐标系的变换,将目标的坐标系转换到全局坐标系。函数是goalToGlobalFrame. 使用的是tf中的transform。
geometry_msgs::PoseStamped MoveBase::goalToGlobalFrame(const geometry_msgs::PoseStamped& goal_pose_msg){
std::string global_frame = planner_costmap_ros_->getGlobalFrameID();
geometry_msgs::PoseStamped goal_pose, global_pose;
goal_pose = goal_pose_msg;
//just get the latest available transform... for accuracy they should send
//goals in the frame of the planner
goal_pose.header.stamp = ros::Time();
try{
tf_.transform(goal_pose_msg, global_pose, global_frame);
}
catch(tf2::TransformException& ex){
ROS_WARN("Failed to transform the goal pose from %s into the %s frame: %s",
goal_pose.header.frame_id.c_str(), global_frame.c_str(), ex.what());
return goal_pose_msg;
}
return global_pose;
}
回到executeCb函数,在进行完坐标系转换后,进行目标的设定,并且唤醒路径规划器。
publishZeroVelocity(); //初始化速度,均设置成0,发布。
//we have a goal so start the planner
boost::unique_lock<boost::recursive_mutex> lock(planner_mutex_);
planner_goal_ = goal;
runPlanner_ = true;
planner_cond_.notify_one();
lock.unlock();
然后发布目标点,并且设置了控制频率
current_goal_pub_.publish(goal); //发布目标点
std::vector<geometry_msgs::PoseStamped> global_plan;
ros::Rate r(controller_frequency_); //设置控制频率
然后是代价地图的更新,先判断代价地图是否开始,未开始就开始更新。
if(shutdown_costmaps_){
ROS_DEBUG_NAMED("move_base","Starting up costmaps that were shut down previously");
planner_costmap_ros_->start();
controller_costmap_ros_->start();
}
然后是设置时间,保证有效的路径规划
last_valid_control_ = ros::Time::now();
last_valid_plan_ = ros::Time::now();
last_oscillation_reset_ = ros::Time::now();
planning_retries_ = 0;
然后开始循环,首先判断是否修改控制频率
while(n.ok())
{
//首先判断是否要更改控制频率
if(c_freq_change_)
{
ROS_INFO("Setting controller frequency to %.2f", controller_frequency_);
r = ros::Rate(controller_frequency_);
c_freq_change_ = false;
}
然后是判断actionserver是否激活以及是否有新的导航点。如果有新的导航点,则表示之前的导航点无效,所以需要重新进行判断四元数,转换全局坐标系,重新唤醒路径规划器。代码在上文中都有所提及。
if(as_->isPreemptRequested()){
if(as_->isNewGoalAvailable()){
//if we're active and a new goal is available, we'll accept it, but we won't shut anything down
move_base_msgs::MoveBaseGoal new_goal = *as_->acceptNewGoal();
if(!isQuaternionValid(new_goal.target_pose.pose.orientation)){
as_->setAborted(move_base_msgs::MoveBaseResult(), "Aborting on goal because it was sent with an invalid quaternion");
return;
}
goal = goalToGlobalFrame(new_goal.target_pose);
//we'll make sure that we reset our state for the next execution cycle
recovery_index_ = 0;
state_ = PLANNING;
//we have a new goal so make sure the planner is awake
lock.lock();
planner_goal_ = goal;
runPlanner_ = true;
planner_cond_.notify_one();
lock.unlock();
//publish the goal point to the visualizer
ROS_DEBUG_NAMED("move_base","move_base has received a goal of x: %.2f, y: %.2f", goal.pose.position.x, goal.pose.position.y);
current_goal_pub_.publish(goal);
//make sure to reset our timeouts and counters
last_valid_control_ = ros::Time::now();
last_valid_plan_ = ros::Time::now();
last_oscillation_reset_ = ros::Time::now();
planning_retries_ = 0;
如果没有新的目标,那就应该对这个action进行中断,重置状态,继续之前的导航的状态。(这里的理解可能有些问题,重置状态不会对之前导航状态进行重置?)
else {
//if we've been preempted explicitly we need to shut things down
resetState();
//notify the ActionServer that we've successfully preempted
ROS_DEBUG_NAMED("move_base","Move base preempting the current goal");
as_->setPreempted();
//we'll actually return from execute after preempting
return;
}
}
接下来会对目标点检测是否是在全局坐标系下的表示,如果不是,则需要进行转换,然后继续进行重新路径规划等一些操作。代码也是重复的:
if(goal.header.frame_id != planner_costmap_ros_->getGlobalFrameID()){
goal = goalToGlobalFrame(goal);
//we want to go back to the planning state for the next execution cycle
recovery_index_ = 0;
state_ = PLANNING;
//we have a new goal so make sure the planner is awake
lock.lock();
planner_goal_ = goal;
runPlanner_ = true;
planner_cond_.notify_one();
lock.unlock();
//publish the goal point to the visualizer
ROS_DEBUG_NAMED("move_base","The global frame for move_base has changed, new frame: %s, new goal position x: %.2f, y: %.2f", goal.header.frame_id.c_str(), goal.pose.position.x, goal.pose.position.y);
current_goal_pub_.publish(goal);
//make sure to reset our timeouts and counters
last_valid_control_ = ros::Time::now();
last_valid_plan_ = ros::Time::now();
last_oscillation_reset_ = ros::Time::now();
planning_retries_ = 0;
}
在进行了上述一些检测之后,才会真正进入到执行到达目标点工作的函数:executeCycle();
ros::WallTime start = ros::WallTime::now();
//the real work on pursuing a goal is done here
bool done = executeCycle(goal, global_plan);
如果完成了就会返回。
最后还有检测是那种方式完成的以及休眠动作。
ros::WallDuration t_diff = ros::WallTime::now() - start;
ROS_DEBUG_NAMED("move_base","Full control cycle time: %.9f\n", t_diff.toSec());
r.sleep();
//make sure to sleep for the remainder of our cycle time
if(r.cycleTime() > ros::Duration(1 / controller_frequency_) && state_ == CONTROLLING)
ROS_WARN("Control loop missed its desired rate of %.4fHz... the loop actually took %.4f seconds", controller_frequency_, r.cycleTime().toSec());
}
//wake up the planner thread so that it can exit cleanly
lock.lock();
runPlanner_ = true;
planner_cond_.notify_one();
lock.unlock();
//if the node is killed then we'll abort and return
as_->setAborted(move_base_msgs::MoveBaseResult(), "Aborting on the goal because the node has been killed");
return;
}
在executeCb();函数中,又会涉及到executeCycle();函数,是执行导航的工作函数。返回导航的结果,是否到达目标点。
首先是获取机器人当前位置并且发布(actionlib中的publishfeedback存在疑问?);(像是一个缓冲器,存储多个逐个发送那种。)
geometry_msgs::PoseStamped global_pose;
getRobotPose(global_pose, planner_costmap_ros_);
const geometry_msgs::PoseStamped& current_position = global_pose;
//push the feedback out
move_base_msgs::MoveBaseFeedback feedback;
feedback.base_position = current_position;
as_->publishFeedback(feedback);
其中getRobotPose函数是得到机器人当前位置的函数,主要就是注意坐标系转换以及时间戳需要一致。
bool MoveBase::getRobotPose(geometry_msgs::PoseStamped& global_pose, costmap_2d::Costmap2DROS* costmap)
{
tf2::toMsg(tf2::Transform::getIdentity(), global_pose.pose);
geometry_msgs::PoseStamped robot_pose;
tf2::toMsg(tf2::Transform::getIdentity(), robot_pose.pose);
robot_pose.header.frame_id = robot_base_frame_;
robot_pose.header.stamp = ros::Time(); // latest available
ros::Time current_time = ros::Time::now(); // save time for checking tf delay later
// get robot pose on the given costmap frame
try
{
tf_.transform(robot_pose, global_pose, costmap->getGlobalFrameID());
}
catch (tf2::LookupException& ex)
{
ROS_ERROR_THROTTLE(1.0, "No Transform available Error looking up robot pose: %s\n", ex.what());
return false;
}
catch (tf2::ConnectivityException& ex)
{
ROS_ERROR_THROTTLE(1.0, "Connectivity Error looking up robot pose: %s\n", ex.what());
return false;
}
catch (tf2::ExtrapolationException& ex)
{
ROS_ERROR_THROTTLE(1.0, "Extrapolation Error looking up robot pose: %s\n", ex.what());
return false;
}
// check if global_pose time stamp is within costmap transform tolerance
if (current_time.toSec() - global_pose.header.stamp.toSec() > costmap->getTransformTolerance())
{
ROS_WARN_THROTTLE(1.0, "Transform timeout for %s. " \
"Current time: %.4f, pose stamp: %.4f, tolerance: %.4f", costmap->getName().c_str(),
current_time.toSec(), global_pose.header.stamp.toSec(), costmap->getTransformTolerance());
return false;
}
return true;
}
在进行完获取位置后,会对机器人位置是否震荡(??),以及代价地图更新是否超时,超时则表示得到数据和实际不匹配。导航结果会错误,因此会进行重置。
if(distance(current_position, oscillation_pose_) >= oscillation_distance_)
{
last_oscillation_reset_ = ros::Time::now();
oscillation_pose_ = current_position;
//if our last recovery was caused by oscillation, we want to reset the recovery index
if(recovery_trigger_ == OSCILLATION_R)
recovery_index_ = 0;
}
//check that the observation buffers for the costmap are current, we don't want to drive blind
if(!controller_costmap_ros_->isCurrent()){
ROS_WARN("[%s]:Sensor data is out of date, we're not going to allow commanding of the base for safety",ros::this_node::getName().c_str());
publishZeroVelocity();
return false;
}
然后判断是否有新路径,如果存在则调用setPlan函数,传递给路径规划器(一个外部包的函数)。而后确认重置了恢复的一个recovery_index,一个计数,保证不越界。
if(!tc_->setPlan(*controller_plan_)){
//ABORT and SHUTDOWN COSTMAPS
ROS_ERROR("Failed to pass global plan to the controller, aborting.");
resetState();
//disable the planner thread
lock.lock();
runPlanner_ = false;
lock.unlock();
as_->setAborted(move_base_msgs::MoveBaseResult(), "Failed to pass global plan to the controller.");
return true;
}
//make sure to reset recovery_index_ since we were able to find a valid plan
if(recovery_trigger_ == PLANNING_R)
recovery_index_ = 0;
}
然后进入到一个状态机,有PLANNING, CONTROLLING, CLEARING,主要的是其中的CONTROLLING,planning状态的话,就继续进行规划。
case PLANNING:
{
boost::recursive_mutex::scoped_lock lock(planner_mutex_);
runPlanner_ = true;
planner_cond_.notify_one();
}
ROS_DEBUG_NAMED("move_base","Waiting for plan, in the planning state.");
break;
CLEARING 是机器人如果控制或者规划失败进入的一个状态,会进行恢复行为,并且设置为导航状态。如果没有恢复行为,或者是恢复已经越界(else里内容),则会结束动作。然后进行resetState();这里runBehavior()函数是另外一个包的。
case CLEARING:
ROS_DEBUG_NAMED("move_base","In clearing/recovery state");
//we'll invoke whatever recovery behavior we're currently on if they're enabled
if(recovery_behavior_enabled_ && recovery_index_ < recovery_behaviors_.size()){
ROS_DEBUG_NAMED("move_base_recovery","Executing behavior %u of %zu", recovery_index_, recovery_behaviors_.size());
recovery_behaviors_[recovery_index_]->runBehavior();
//we at least want to give the robot some time to stop oscillating after executing the behavior
last_oscillation_reset_ = ros::Time::now();
//we'll check if the recovery behavior actually worked
ROS_DEBUG_NAMED("move_base_recovery","Going back to planning state");
last_valid_plan_ = ros::Time::now();
planning_retries_ = 0;
state_ = PLANNING;
//update the index of the next recovery behavior that we'll try
recovery_index_++;
}
else{
ROS_DEBUG_NAMED("move_base_recovery","All recovery behaviors have failed, locking the planner and disabling it.");
//disable the planner thread
boost::unique_lock<boost::recursive_mutex> lock(planner_mutex_);
runPlanner_ = false;
lock.unlock();
ROS_DEBUG_NAMED("move_base_recovery","Something should abort after this.");
if(recovery_trigger_ == CONTROLLING_R){
ROS_ERROR("Aborting because a valid control could not be found. Even after executing all recovery behaviors");
as_->setAborted(move_base_msgs::MoveBaseResult(), "Failed to find a valid control. Even after executing recovery behaviors.");
}
else if(recovery_trigger_ == PLANNING_R){
ROS_ERROR("Aborting because a valid plan could not be found. Even after executing all recovery behaviors");
as_->setAborted(move_base_msgs::MoveBaseResult(), "Failed to find a valid plan. Even after executing recovery behaviors.");
}
else if(recovery_trigger_ == OSCILLATION_R){
ROS_ERROR("Aborting because the robot appears to be oscillating over and over. Even after executing all recovery behaviors");
as_->setAborted(move_base_msgs::MoveBaseResult(), "Robot is oscillating. Even after executing recovery behaviors.");
}
resetState();
return true;
}
break;
主要的是controlling状态。
首先是检测是否到达目标点,如果到达,就重置状态。其中isGoalReached函数也是外部。
if(tc_->isGoalReached()){
ROS_DEBUG_NAMED("move_base","Goal reached!");
resetState();
//disable the planner thread
boost::unique_lock<boost::recursive_mutex> lock(planner_mutex_);
runPlanner_ = false;
lock.unlock();
as_->setSucceeded(move_base_msgs::MoveBaseResult(), "Goal reached.");
return true;
}
其中resetState函数功能是将规划器关闭,然后重新进行到Planning状态,并且将机器人速度设置0。还有就是代价地图是否停止更新。
void MoveBase::resetState(){
// Disable the planner thread
boost::unique_lock<boost::recursive_mutex> lock(planner_mutex_);
runPlanner_ = false;
lock.unlock();
// Reset statemachine
state_ = PLANNING;
recovery_index_ = 0;
recovery_trigger_ = PLANNING_R;
publishZeroVelocity();
//if we shutdown our costmaps when we're deactivated... we'll do that now
if(shutdown_costmaps_){
ROS_DEBUG_NAMED("move_base","Stopping costmaps");
planner_costmap_ros_->stop();
controller_costmap_ros_->stop();
}
}
回到PLANNING状态,在检测完是否到达目标点之后,检测是否超过震荡时间,如果超过,就停止机器人,并且将状态改为CLEARING;
if(oscillation_timeout_ > 0.0 &&
last_oscillation_reset_ + ros::Duration(oscillation_timeout_) < ros::Time::now())
{
publishZeroVelocity();
state_ = CLEARING;
recovery_trigger_ = OSCILLATION_R;
}
接下来就是获取导航过程中有效的速度,然后发布。computeVelocityCommands函数也是外部的一个函数。(??)
if(tc_->computeVelocityCommands(cmd_vel)){
ROS_DEBUG_NAMED( "move_base", "Got a valid command from the local planner: %.3lf, %.3lf, %.3lf",
cmd_vel.linear.x, cmd_vel.linear.y, cmd_vel.angular.z );
last_valid_control_ = ros::Time::now();
//make sure that we send the velocity command to the base
vel_pub_.publish(cmd_vel);
if(recovery_trigger_ == CONTROLLING_R)
recovery_index_ = 0;
}
如果没有获取到有效速度,就让机器人停止然后进入到CLEARING状态或者是重新进行路径的规划。
else {
ROS_DEBUG_NAMED("move_base", "The local planner could not find a valid plan.");
ros::Time attempt_end = last_valid_control_ + ros::Duration(controller_patience_);
//check if we've tried to find a valid control for longer than our time limit
if(ros::Time::now() > attempt_end){
//we'll move into our obstacle clearing mode
publishZeroVelocity();
state_ = CLEARING;
recovery_trigger_ = CONTROLLING_R;
}
else{
//otherwise, if we can't find a valid control, we'll go back to planning
last_valid_plan_ = ros::Time::now();
planning_retries_ = 0;
state_ = PLANNING;
publishZeroVelocity();
//enable the planner thread in case it isn't running on a clock
boost::unique_lock<boost::recursive_mutex> lock(planner_mutex_);
runPlanner_ = true;
planner_cond_.notify_one();
lock.unlock();
}
}
如果不是这三个状态,就进行重置。
else {
ROS_DEBUG_NAMED("move_base", "The local planner could not find a valid plan.");
ros::Time attempt_end = last_valid_control_ + ros::Duration(controller_patience_);
//check if we've tried to find a valid control for longer than our time limit
if(ros::Time::now() > attempt_end){
//we'll move into our obstacle clearing mode
publishZeroVelocity();
state_ = CLEARING;
recovery_trigger_ = CONTROLLING_R;
}
else{
//otherwise, if we can't find a valid control, we'll go back to planning
last_valid_plan_ = ros::Time::now();
planning_retries_ = 0;
state_ = PLANNING;
publishZeroVelocity();
//enable the planner thread in case it isn't running on a clock
boost::unique_lock<boost::recursive_mutex> lock(planner_mutex_);
runPlanner_ = true;
planner_cond_.notify_one();
lock.unlock();
}
这个函数是经常被唤起的一个线程中进行的,自己对多线程不太懂,只是对函数内容学习,但是怎么进到这个函数不太清楚。(等待executeCb函数唤醒)
首先是判断是否阻塞线程。
while(wait_for_wake || !runPlanner_){
//if we should not be running the planner then suspend this thread
ROS_DEBUG_NAMED("move_base_plan_thread","Planner thread is suspending");
planner_cond_.wait(lock);
wait_for_wake = false;
}
定义一个目标点传递过程中的中间量
ros::Time start_time = ros::Time::now();
//time to plan! get a copy of the goal and unlock the mutex
geometry_msgs::PoseStamped temp_goal = planner_goal_;
lock.unlock();
ROS_DEBUG_NAMED("move_base_plan_thread","Planning...");
然后获取全局路径
//3. 获取规划的全局路径
//这里的makePlan作用是获取机器人的位姿作为起点,然后调用全局规划器的makePlan返回规划路径,存储在planner_plan_
planner_plan_->clear();
bool gotPlan = n.ok() && makePlan(temp_goal, *planner_plan_);
如果获得规划的路径,就将其传递到latest_plan,然后修改当前状态
if(gotPlan){
ROS_DEBUG_NAMED("move_base_plan_thread","Got Plan with %zu points!", planner_plan_->size());
//pointer swap the plans under mutex (the controller will pull from latest_plan_)
std::vector<geometry_msgs::PoseStamped>* temp_plan = planner_plan_;
lock.lock();
planner_plan_ = latest_plan_;
latest_plan_ = temp_plan;
last_valid_plan_ = ros::Time::now();
planning_retries_ = 0;
new_global_plan_ = true;
ROS_DEBUG_NAMED("move_base_plan_thread","Generated a plan from the base_global_planner");
//make sure we only start the controller if we still haven't reached the goal
if(runPlanner_)
state_ = CONTROLLING;
if(planner_frequency_ <= 0)
runPlanner_ = false;
lock.unlock();
}
如果当前已经是规划路径的状态了,但是又没有得到新的路径,就判断一下有没有超出时间限制以及或者规划次数
else if(state_==PLANNING){
ROS_DEBUG_NAMED("move_base_plan_thread","No Plan...");
ros::Time attempt_end = last_valid_plan_ + ros::Duration(planner_patience_);
//check if we've tried to make a plan for over our time limit or our maximum number of retries
//issue #496: we stop planning when one of the conditions is true, but if max_planning_retries_
//is negative (the default), it is just ignored and we have the same behavior as ever
lock.lock();
planning_retries_++;
if(runPlanner_ &&
(ros::Time::now() > attempt_end || planning_retries_ > uint32_t(max_planning_retries_))){
//we'll move into our obstacle clearing mode
state_ = CLEARING;
runPlanner_ = false; // proper solution for issue #523
publishZeroVelocity();
recovery_trigger_ = PLANNING_R;
}
lock.unlock();
}
如果还没到规划周期则定时器睡眠,在定时器中断中通过planner_cond_唤醒,这里规划周期为0
if(planner_frequency_ > 0){
ros::Duration sleep_time = (start_time + ros::Duration(1.0/planner_frequency_)) - ros::Time::now();
if (sleep_time > ros::Duration(0.0)){
wait_for_wake = true;
timer = n.createTimer(sleep_time, &MoveBase::wakePlanner, this);
}
主要函数就是以上三个,但是之前提到的move_base_simple话题,订阅goalCB函数。make_plan服务的回调函数是planService。还有clear_costmaps服务回调函数是clearCostmapsService。这三个函数比较简单。功能也就是在之前hpp文件中提到的。
整个move_base源码就是注释和看完了,然后接下来应该会对整个逻辑画一个类似结构图的东西。
参考博客
https://www.cnblogs.com/JuiceCat/p/13040552.html
https://blog.csdn.net/Nksjc/article/details/78871528