- 【强化学习】PyTorch-RL框架
大雨淅淅
人工智能pytorch人工智能python深度学习机器学习
目录一、框架简介二、核心功能三、学习环境配置四、学习资源五、实践与应用六、常见问题与解决方案七、深入理解强化学习概念八、构建自己的强化学习环境九、调试与优化十、参与社区与持续学习一、框架简介PyTorch-RL是一个基于PyTorch框架的深度强化学习项目。它充分利用了PyTorch的强大功能,提供了易于使用且高效的深度强化学习算法实现。该项目的主要编程语言是Python,旨在帮助开发者快速实现和
- 【机器学习实战中阶】音乐流派分类-自动化分类不同音乐风格
精通代码大仙
数据挖掘深度学习python机器学习分类自动化人工智能数据挖掘深度学习
音乐流派分类–自动化分类不同音乐风格在本教程中,我们将开发一个深度学习项目,用于自动化地从音频文件中分类不同的音乐流派。我们将使用音频文件的频率域和时间域低级特征来分类这些音频文件。对于这个项目,我们需要一个具有相似大小和相似频率范围的音频曲目数据集。GTZAN流派分类数据集是音乐流派分类项目中最推荐的数据集,并且它是为了这个任务而收集的。音乐流派分类器模型音乐流派分类关于数据集:GTZAN流派收
- 深度学习项目--基于LSTM的火灾预测研究(pytorch实现)
羊小猪~~
RNNLSTM神经网络案例机器学习/数据分析案例深度学习lstmpytorch人工智能机器学习rnngru
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊前言LSTM模型一直是一个很经典的模型,这个模型当然也很复杂,一般需要先学习RNN、GRU模型之后再学,GRU、LSTM的模型讲解将在这两天发布更新,其中:深度学习基础–一文搞懂RNN深度学习基础–GRU学习笔记(李沐《动手学习深度学习》)这一篇:是基于LSTM模型火灾预测研究,讲述了如何构建时间数据、模型如何构建、pytorch中LST
- 亦菲喊你来学机器学习(21) --数据清洗
方世恩
机器学习人工智能python算法
数据清洗在数据分析和机器学习项目中,数据清洗(DataCleaning)是一个至关重要的步骤,它涉及到处理原始数据中的错误、缺失值、异常值、重复记录以及不一致的格式等问题。data.fillna()是Pandas库中用于处理缺失值(NaN值)的一个非常有用的方法。1.读取数据importpandasaspddata=pd.read_excel('矿物数据.xlsx')data=data[data[
- 深度学习项目实践——qq聊天机器人(transformer)(二)配置环境与部署
Linductor
qq聊天机器人项目深度学习机器人人工智能
深度学习项目实践——qq聊天机器人(transformer)(二)配置环境与部署上一节我们讲解了qq聊天的原理和qq机器人的框架以及运行流程,这一节我们来讲怎么配置环境,部署qq机器人。第一步——配置环境有关代替qq客户端实现反向websocket连接这一部分内容由于一些原因,我无法在这里具体讲解,我把这部分内容放到了github中我的项目内,请自行查看。机器人主体——nonebot2nonebo
- 通过 Docker 部署 WordPress 服务器
shelby_loo
docker服务器容器
今天我们将在阿贝云的免费服务器上进行WordPress的部署测试。阿贝云的免费云服务器配置简直是个宝藏,1核CPU、1GB内存、10GB硬盘和5M带宽,真是不错的免费服务器,适合轻量级应用和学习项目。无论你是开发者还是爱好者,阿贝云都能给你提供一个稳定的环境,帮助你快速上手。Docker和WordPress简介Docker是一个开源平台,允许开发者将应用程序及其依赖打包到一个可移植的容器中。通过容
- 学习项目1
m0_62803606
学习
https://blog.csdn.net/qq_64257614/article/details/139217194Zigbee+PC上位机无线控制二维云台开发笔记_无线串口上位机-CSDN博客1.学习1你今天开始开发一个简单易学的PC上位机无线控制二维云台的小型试验项目。这个项目涉及到使用STM32单片机进行云台的控制,以及通过无线通信模块实现PC与云台之间的通信。主要的开发环境和工具包括:#
- PMP这辈子我是不会再考了
欧尼戏精少女
求职招聘职场和发展
我参加的是2023年5月深圳场的考试,D卷,3A通过。职场小白试水考一个证书,学习学习项目管理知识,本以为低分飘过,万万没有想到,成绩出乎意料的不错!!!前期筛选了大量的辅导机构和一堆复习资料,在闺蜜的推荐下报了威班,威班的精讲老师大D老师,讲课十分有趣生动,特别适合我这种小白哈哈哈。串讲和冲刺讲的很精炼。他讲题特别针对考点,能帮助小白快速锁定题干,选择正确答案。还有班班的贴心服务,班班的计划可以
- 【深度学习 transformer】使用pytorch 训练transformer 模型,hugginface 来啦
东华果汁哥
深度学习-文本分类深度学习transformerpytorch
HuggingFace是一个致力于开源自然语言处理(NLP)和机器学习项目的社区。它由几个关键组件组成:Transformers:这是一个基于PyTorch的库,提供了各种预训练的NLP模型,如BERT、GPT、RoBERTa、DistilBERT等。它还提供了一个简单易用的API来加载这些模型,并进行微调以适应特定的下游任务。Datasets:这是一个用于加载和预处理NLP数据集的库,与Tran
- AI深度学习项目-yolo4_tiny 垃圾分类识别系统
毕设宇航
yolov4垃圾识别QQ767172261
项目概述目标本项目旨在开发一个高效的垃圾分类识别系统,利用深度学习技术特别是YOLOv4-tiny版本来实现垃圾的自动分类。YOLOv4-tiny作为YOLOv4的一个轻量化版本,在保证较高精度的同时,能够提供更快的检测速度,非常适合资源受限的设备或者要求实时性的应用场景。技术栈深度学习框架:PyTorch目标检测算法:YOLOv4-tiny编程语言:Python硬件加速:GPU(如果可用)功能特
- 揭秘:屡创奇迹的高绩效行动学习项目是如何设计的
行动学习刘世龙
学了促动技术以后该如何在组织中去实践呢?该怎样规避一些暗礁和风险呢?如何将传统培训与行动学习结合起来?行动学习过程中学员暴露出来的能力短板该如何弥补?针对组织,该如何发动全员参与全覆盖?针对学员的心理干预、行为干预及绩效干预的辅导周期应该间隔多久?开展大型的集中式辅导与小型的分散式辅导该如何做?如何将外部的促动与内部的教练相结合?内部促动师和教练该如何培养?要保证行动学习项目的成功,我们应该建立哪
- 2022-3-31晨间日记
木子冀
今天是什么日子起床:6:30就寝:22:30天气:阴心情:良好纪念日:任务清单昨日完成的任务,最重要的三件事:1.开会讨论项目相关事宜。2.学习项目任务书填写注意事项。3.商讨房子装修事宜。改进:习惯养成:1.记录饮食。2.跳绳,保持运动。3.早起打卡。周目标·完成进度本周工作任务基本完成。学习任务还需努力!学习·信息·阅读阅读时间较少。健康·饮食·锻炼注意控制饮食。加强身体锻炼,跳绳1000下。
- 数据切分的艺术:使用PyTorch的torch.utils.data.random_split精粹指南
2402_85758349
机器学习
数据切分的艺术:使用PyTorch的torch.utils.data.random_split精粹指南在机器学习项目中,合理地分割数据集至关重,它不仅关系到模型训练的有效性,还直接影响到模型的泛化能力。PyTorch提供了一个强大的工具torch.utils.data.random_split,它能够以随机的方式将数据集分割成若干个子集。本文将详细介绍如何使用这一工具进行数据集的随机分割。1.随机
- 深度学习项目实践——QQ聊天机器人(transformer)(三)功能实现的方法——NoneBot2插件结构与编写
Linductor
qq聊天机器人项目机器人transformernonebot
深度学习项目实践——QQ聊天机器人(transformer)(三)功能实现的方法——NoneBot2插件结构与编写在前两节中,我们详细讲解了QQ聊天的原理、QQ机器人的框架与环境配置的流程。本节将重点介绍NoneBot2的插件构成,以及如何从零开始编写一个属于自己的插件。这一篇文章主要就是充当搬运工,参考了nonebot2的官方文档第一步:了解NoneBot2的架构在开始编写插件之前,我们先来了解
- spark应用程序转换_4.Spark特征提取、转换和选择 - 简书
weixin_39956182
spark应用程序转换
在实际机器学习项目中,我们获取的数据往往是不规范、不一致、有很多缺失数据,甚至不少错误数据,这些数据有时又称为脏数据或噪音,在模型训练前,务必对这些脏数据进行处理,否则,再好的模型,也只能脏数据进,脏数据出。这章我们主要介绍对数据处理涉及的一些操作,主要包括:特征提取特征转换特征选择4.1特征提取特征提取一般指从原始数据中抽取特征。4.1.1词频-逆向文件频率(TF-IDF)词频-逆向文件频率(T
- Keras深度学习框架实战(2):估计模型训练所需的样本量
MUKAMO
AIPython应用Keras框架深度学习keras人工智能
1、模型训练样本量评估概述1.1样本量评估的意义预估模型需要的样本量对于机器学习项目的成功至关重要,以下是几个主要原因:防止过拟合与欠拟合:过拟合:当模型在训练数据上表现极好,但在未见过的测试数据上表现糟糕时,就发生了过拟合。这通常是因为模型过于复杂,而训练数据不足以支持其学习数据的真实模式。通过预估足够的样本量,我们可以减少过拟合的风险。欠拟合:与过拟合相反,欠拟合是模型未能捕捉到数据中的关键模
- Java项目的真实开发流程、以及面试前的准备说辞
小满只想睡觉
java面试开发语言
介绍项目是必不可少的Java面试环节,求职者需要借此证明自己真实Java项目的经验,如果再做的好的话,需要借此展开自己的亮点说辞。不过之前如果只有学习项目经验,比如是自己跑通一个项目,或者是在培训班里通过一个SpringBoot项目入门Java,那么这些学习项目的开发流程其实和公司里真实Java项目,是有一定差距的。在转行之类需要真实项目的场景里,如果仅仅介绍学习项目里的开发流程和开发细节,那么真
- 《Python机器学习项目实战》书籍介绍
袁袁袁袁满
python机器学习开发语言
文章目录书籍介绍主要内容书籍目录书籍介绍《Python机器学习项目实战》带领大家在构建实际项目的过程中,掌握关键的机器学习概念!使用机器学习,我们可完成客户行为分析、价格趋势预测、风险评估等任务。要想掌握机器学习,需要有优质的范例、清晰的讲解和大量的练习。《Python机器学习项目实战》完全满足这三点!《Python机器学习项目实战》展示了现实、实用的机器学习场景,并全面、清晰地介绍了机器学习的关
- 适合编程初学者的开源云笔记系统(NodeJS版)
蓝不蓝编程
目标为编程初学者打造入门学习项目,使用各种主流编程语言来实现。让想学编程的,一个都不落下。image上述基本涵盖了当前编程开发所有主流语言。左侧为前端版本:安卓、iOS、鸿蒙、Flutter、Vue、uni-app。右侧为服务器端版本:Java、Python、Go、PHP、NodeJS前端效果图image支持特性注册、登录云笔记增删改查支持mysql数据库开发工具下载VisualStudioCod
- 深度学习项目-基于深度学习的股票价格预测研究
雅致教育
计算机毕业设计深度学习人工智能
概要 随着经济的发展,中国股票市场的规模持续扩大,早已成为金融投资的重要部分,掌握股票市场的变化规律无论是对监管者还是投资者都具有极其重要的意义。正因如此,人们不断探索着股票市场的变化规律,其中使用深度学习预测股价是当前国内国际研究与应用的热点。 本文首先从有效市场假说和分形市场假说两个角度讨论了中国股票市场的有效性,说明股票市场具有复杂的非线性特征。其次,结合股票市场特征对比了当前的预测方法
- 【编程入门】应用市场(Java版)
蓝不蓝编程
背景前面已输出多个系列:《十余种编程语言做个计算器》《十余种编程语言写2048小游戏》《17种编程语言+10种排序算法》《十余种编程语言写博客系统》《十余种编程语言写云笔记》《N种编程语言做个记事本》目标为编程初学者打造入门学习项目,使用各种主流编程语言来实现。[图片上传失败...(image-af9b3a-1677333595958)]左侧为前端版本:安卓、iOS、鸿蒙、Flutter、Vue、
- 从别人的开源项目学习并吸收经验,然后逐步搭建自己的Java项目是一个很好的学习方法
如饥似渴的rocky
Java开发Java后台开发web开发java开源
从别人的开源项目学习并吸收经验,然后逐步搭建自己的Java项目是一个很好的学习方法。以下是一些建议的步骤,帮助你从0开始搭建并不断完善自己的Java项目,直至达到高可靠、高稳定、高并发、高数据安全,并可以拆分为微服务的大型高质量项目:选择合适的开源项目:寻找与你感兴趣的技术领域或业务场景相关的开源项目。查看项目的文档、活跃度、社区支持情况等,确保项目有足够的参考价值。学习项目架构:仔细研究项目的整
- 已解决ModuleNotFoundError: No module named ‘tensorflow‘异常的正确解决方法,亲测有效!!!
小 明
Bug解决大全tensorflow人工智能pythonjava开发语言ExceptionError
已解决ModuleNotFoundError:Nomodulenamed'tensorflow'异常的正确解决方法,亲测有效!!!文章目录问题分析报错原因解决思路解决方法总结在深度学习和机器学习项目中,TensorFlow是一个极为常用和功能强大的库。如果你在导入TensorFlow时遭遇到了ModuleNotFoundError:Nomodulenamed'tensorflow'这一错误,那么本
- 【机器学习案例6】使用机器学习从图像中提取突出的颜色(含源码)
suoge223
机器学习实用指南机器学习人工智能python
专栏导读作者介绍:工学博士,高级工程师,专注于工业软件算法研究本文已收录于专栏:《机器学习实用指南》本专栏旨在提供1.机器学习经典案例及源码;2.开源机器学习训练数据集;3.机器学习前沿专业博文。以案例的形式从实用的角度出发,快速上手机器学习项目,在案例中成长,摆脱按部就班填鸭式教学。欢迎订阅专栏,订阅用户可私聊进入机器学习交流群(知识交流、问题解答),并获赠丰厚的机器学习相关学习资料(教材、源码
- 【机器学习案例7】计算机视觉中的小物体检测:基于补丁的方法
suoge223
机器学习实用指南机器学习计算机视觉人工智能
专栏导读作者简介:工学博士,高级工程师,专注于工业软件算法研究本文已收录于专栏:《机器学习实用指南》本专栏旨在提供1.机器学习经典案例及源码;2.开源机器学习训练数据集;3.机器学习前沿专业博文。以案例的形式从实用的角度出发,快速上手机器学习项目,在案例中成长,摆脱按部就班填鸭式教学。欢迎订阅专栏,订阅用户可私聊进入机器学习交流群(知识交流、问题解答),并获赠丰厚的机器学习相关学习资料(教材、源码
- 【机器学习笔记】 15 机器学习项目流程
RIKI_1
机器学习机器学习笔记人工智能
机器学习的一般步骤数据清洗数据清洗是指发现并纠正数据文件中可识别的错误的最后一道程序,包括检查数据一致性,处理无效值和缺失值等。与问卷审核不同,录入后的数据清理一般是由计算机而不是人工完成。探索性数据分析(EDA探索性数据分析(EDA)是一个开放式流程,我们制作绘图并计算统计数据,以便探索我们的数据。目的是找到异常,模式,趋势或关系。这些可能是有趣的(例如,找到两个变量之间的相关性),或者它们可用
- Spring && SpringMVC && Mybatis
知code
java开发语言程序人生
全网最新SSM快速练手学习项目——简单超易懂系列前言——SSM回顾SpringMybatisSpringMVC1、导入ssm框架的基本依赖2、SSM工程整合流程2.1、数据库配置文件db.properties2.2、mybatis配置文件mybatisConfig.xml2.3、spring配置文件applicationContext.xml2.3.1applicationContext_dao.
- JAVA项目一 家庭收支记账软件
D_D_zy
javajava基础java
JAVA学习项目一家庭收支记账软件学习项目之一家庭收支记账软件项目任务项目技术实现分析流程分析解决思路Utility工具类主程序实现循环语句分支语句代码说明实验总结学习项目之一家庭收支记账软件项目任务模拟实现基于文本界面的家庭记账收支软件。该软件能够记录个人收入或支出,并能够打印出收支明细概况。项目采用分级菜单方式,主菜单如下:项目技术局部变量和基本数据类型。循环语句和分支语句。方法调用和返回值的
- 【复盘】今天是平安夜
小灵仙子
大家好,我是灵仙,今天是2020.12.24,这是我的62/365进化日课:日思今天最重要的事情是什么?1️⃣给自己的下一年的目标加上了起限2️⃣考试就要有个考试的样子,好好开始看书,每天花一个小时的时间在这件事上3主持了早上的教练晨会日习今天学到了哪些知识?升级了哪些认知?提升了哪些能力?1️⃣jmeter的逻辑控制器2️⃣开始学习项目管理师日省你今天有哪些缺憾,或者值得反思与改进的事情1️⃣今
- Task 11 XGBoost 算法分析与案例调参实例
沫2021
1.XGBoost算法XGBoost是陈天奇等人开发的一个开源机器学习项目,高效地实现了GBDT算法并进行了算法和工程上的许多改进,被广泛应用在Kaggle竞赛及其他许多机器学习竞赛中并取得了不错的成绩。XGBoost是一个优化的分布式梯度增强库,旨在实现高效,灵活和便携。它在GradientBoosting框架下实现机器学习算法。XGBoost提供了并行树提升(也称为GBDT,GBM),可以快速
- Java实现的简单双向Map,支持重复Value
superlxw1234
java双向map
关键字:Java双向Map、DualHashBidiMap
有个需求,需要根据即时修改Map结构中的Value值,比如,将Map中所有value=V1的记录改成value=V2,key保持不变。
数据量比较大,遍历Map性能太差,这就需要根据Value先找到Key,然后去修改。
即:既要根据Key找Value,又要根据Value
- PL/SQL触发器基础及例子
百合不是茶
oracle数据库触发器PL/SQL编程
触发器的简介;
触发器的定义就是说某个条件成立的时候,触发器里面所定义的语句就会被自动的执行。因此触发器不需要人为的去调用,也不能调用。触发器和过程函数类似 过程函数必须要调用,
一个表中最多只能有12个触发器类型的,触发器和过程函数相似 触发器不需要调用直接执行,
触发时间:指明触发器何时执行,该值可取:
before:表示在数据库动作之前触发
- [时空与探索]穿越时空的一些问题
comsci
问题
我们还没有进行过任何数学形式上的证明,仅仅是一个猜想.....
这个猜想就是; 任何有质量的物体(哪怕只有一微克)都不可能穿越时空,该物体强行穿越时空的时候,物体的质量会与时空粒子产生反应,物体会变成暗物质,也就是说,任何物体穿越时空会变成暗物质..(暗物质就我的理
- easy ui datagrid上移下移一行
商人shang
js上移下移easyuidatagrid
/**
* 向上移动一行
*
* @param dg
* @param row
*/
function moveupRow(dg, row) {
var datagrid = $(dg);
var index = datagrid.datagrid("getRowIndex", row);
if (isFirstRow(dg, row)) {
- Java反射
oloz
反射
本人菜鸟,今天恰好有时间,写写博客,总结复习一下java反射方面的知识,欢迎大家探讨交流学习指教
首先看看java中的Class
package demo;
public class ClassTest {
/*先了解java中的Class*/
public static void main(String[] args) {
//任何一个类都
- springMVC 使用JSR-303 Validation验证
杨白白
springmvc
JSR-303是一个数据验证的规范,但是spring并没有对其进行实现,Hibernate Validator是实现了这一规范的,通过此这个实现来讲SpringMVC对JSR-303的支持。
JSR-303的校验是基于注解的,首先要把这些注解标记在需要验证的实体类的属性上或是其对应的get方法上。
登录需要验证类
public class Login {
@NotEmpty
- log4j
香水浓
log4j
log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, HTML, DATABASE
#log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, ROLLINGFILE, HTML
#console
log4j.appender.STDOUT=org.apache.log4j.ConsoleAppender
log4
- 使用ajax和history.pushState无刷新改变页面URL
agevs
jquery框架Ajaxhtml5chrome
表现
如果你使用chrome或者firefox等浏览器访问本博客、github.com、plus.google.com等网站时,细心的你会发现页面之间的点击是通过ajax异步请求的,同时页面的URL发生了了改变。并且能够很好的支持浏览器前进和后退。
是什么有这么强大的功能呢?
HTML5里引用了新的API,history.pushState和history.replaceState,就是通过
- centos中文乱码
AILIKES
centosOSssh
一、CentOS系统访问 g.cn ,发现中文乱码。
于是用以前的方式:yum -y install fonts-chinese
CentOS系统安装后,还是不能显示中文字体。我使用 gedit 编辑源码,其中文注释也为乱码。
后来,终于找到以下方法可以解决,需要两个中文支持的包:
fonts-chinese-3.02-12.
- 触发器
baalwolf
触发器
触发器(trigger):监视某种情况,并触发某种操作。
触发器创建语法四要素:1.监视地点(table) 2.监视事件(insert/update/delete) 3.触发时间(after/before) 4.触发事件(insert/update/delete)
语法:
create trigger triggerName
after/before 
- JS正则表达式的i m g
bijian1013
JavaScript正则表达式
g:表示全局(global)模式,即模式将被应用于所有字符串,而非在发现第一个匹配项时立即停止。 i:表示不区分大小写(case-insensitive)模式,即在确定匹配项时忽略模式与字符串的大小写。 m:表示
- HTML5模式和Hashbang模式
bijian1013
JavaScriptAngularJSHashbang模式HTML5模式
我们可以用$locationProvider来配置$location服务(可以采用注入的方式,就像AngularJS中其他所有东西一样)。这里provider的两个参数很有意思,介绍如下。
html5Mode
一个布尔值,标识$location服务是否运行在HTML5模式下。
ha
- [Maven学习笔记六]Maven生命周期
bit1129
maven
从mvn test的输出开始说起
当我们在user-core中执行mvn test时,执行的输出如下:
/software/devsoftware/jdk1.7.0_55/bin/java -Dmaven.home=/software/devsoftware/apache-maven-3.2.1 -Dclassworlds.conf=/software/devs
- 【Hadoop七】基于Yarn的Hadoop Map Reduce容错
bit1129
hadoop
运行于Yarn的Map Reduce作业,可能发生失败的点包括
Task Failure
Application Master Failure
Node Manager Failure
Resource Manager Failure
1. Task Failure
任务执行过程中产生的异常和JVM的意外终止会汇报给Application Master。僵死的任务也会被A
- 记一次数据推送的异常解决端口解决
ronin47
记一次数据推送的异常解决
需求:从db获取数据然后推送到B
程序开发完成,上jboss,刚开始报了很多错,逐一解决,可最后显示连接不到数据库。机房的同事说可以ping 通。
自已画了个图,逐一排除,把linux 防火墙 和 setenforce 设置最低。
service iptables stop
- 巧用视错觉-UI更有趣
brotherlamp
UIui视频ui教程ui自学ui资料
我们每个人在生活中都曾感受过视错觉(optical illusion)的魅力。
视错觉现象是双眼跟我们开的一个玩笑,而我们往往还心甘情愿地接受我们看到的假象。其实不止如此,视觉错现象的背后还有一个重要的科学原理——格式塔原理。
格式塔原理解释了人们如何以视觉方式感觉物体,以及图像的结构,视角,大小等要素是如何影响我们的视觉的。
在下面这篇文章中,我们首先会简单介绍一下格式塔原理中的基本概念,
- 线段树-poj1177-N个矩形求边长(离散化+扫描线)
bylijinnan
数据结构算法线段树
package com.ljn.base;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Set;
import java.util.TreeSet;
/**
* POJ 1177 (线段树+离散化+扫描线),题目链接为http://poj.org/problem?id=1177
- HTTP协议详解
chicony
http协议
引言
- Scala设计模式
chenchao051
设计模式scala
Scala设计模式
我的话: 在国外网站上看到一篇文章,里面详细描述了很多设计模式,并且用Java及Scala两种语言描述,清晰的让我们看到各种常规的设计模式,在Scala中是如何在语言特性层面直接支持的。基于文章很nice,我利用今天的空闲时间将其翻译,希望大家能一起学习,讨论。翻译
- 安装mysql
daizj
mysql安装
安装mysql
(1)删除linux上已经安装的mysql相关库信息。rpm -e xxxxxxx --nodeps (强制删除)
执行命令rpm -qa |grep mysql 检查是否删除干净
(2)执行命令 rpm -i MySQL-server-5.5.31-2.el
- HTTP状态码大全
dcj3sjt126com
http状态码
完整的 HTTP 1.1规范说明书来自于RFC 2616,你可以在http://www.talentdigger.cn/home/link.php?url=d3d3LnJmYy1lZGl0b3Iub3JnLw%3D%3D在线查阅。HTTP 1.1的状态码被标记为新特性,因为许多浏览器只支持 HTTP 1.0。你应只把状态码发送给支持 HTTP 1.1的客户端,支持协议版本可以通过调用request
- asihttprequest上传图片
dcj3sjt126com
ASIHTTPRequest
NSURL *url =@"yourURL";
ASIFormDataRequest*currentRequest =[ASIFormDataRequest requestWithURL:url];
[currentRequest setPostFormat:ASIMultipartFormDataPostFormat];[currentRequest se
- C语言中,关键字static的作用
e200702084
C++cC#
在C语言中,关键字static有三个明显的作用:
1)在函数体,局部的static变量。生存期为程序的整个生命周期,(它存活多长时间);作用域却在函数体内(它在什么地方能被访问(空间))。
一个被声明为静态的变量在这一函数被调用过程中维持其值不变。因为它分配在静态存储区,函数调用结束后并不释放单元,但是在其它的作用域的无法访问。当再次调用这个函数时,这个局部的静态变量还存活,而且用在它的访
- win7/8使用curl
geeksun
win7
1. WIN7/8下要使用curl,需要下载curl-7.20.0-win64-ssl-sspi.zip和Win64OpenSSL_Light-1_0_2d.exe。 下载地址:
http://curl.haxx.se/download.html 请选择不带SSL的版本,否则还需要安装SSL的支持包 2. 可以给Windows增加c
- Creating a Shared Repository; Users Sharing The Repository
hongtoushizi
git
转载自:
http://www.gitguys.com/topics/creating-a-shared-repository-users-sharing-the-repository/ Commands discussed in this section:
git init –bare
git clone
git remote
git pull
git p
- Java实现字符串反转的8种或9种方法
Josh_Persistence
异或反转递归反转二分交换反转java字符串反转栈反转
注:对于第7种使用异或的方式来实现字符串的反转,如果不太看得明白的,可以参照另一篇博客:
http://josh-persistence.iteye.com/blog/2205768
/**
*
*/
package com.wsheng.aggregator.algorithm.string;
import java.util.Stack;
/**
- 代码实现任意容量倒水问题
home198979
PHP算法倒水
形象化设计模式实战 HELLO!架构 redis命令源码解析
倒水问题:有两个杯子,一个A升,一个B升,水有无限多,现要求利用这两杯子装C
- Druid datasource
zhb8015
druid
推荐大家使用数据库连接池 DruidDataSource. http://code.alibabatech.com/wiki/display/Druid/DruidDataSource DruidDataSource经过阿里巴巴数百个应用一年多生产环境运行验证,稳定可靠。 它最重要的特点是:监控、扩展和性能。 下载和Maven配置看这里: http
- 两种启动监听器ApplicationListener和ServletContextListener
spjich
javaspring框架
引言:有时候需要在项目初始化的时候进行一系列工作,比如初始化一个线程池,初始化配置文件,初始化缓存等等,这时候就需要用到启动监听器,下面分别介绍一下两种常用的项目启动监听器
ServletContextListener
特点: 依赖于sevlet容器,需要配置web.xml
使用方法:
public class StartListener implements
- JavaScript Rounding Methods of the Math object
何不笑
JavaScriptMath
The next group of methods has to do with rounding decimal values into integers. Three methods — Math.ceil(), Math.floor(), and Math.round() — handle rounding in differen