import caffe
from caffe import layers as L
from caffe import params as P
def net(dbfile,batch_size,mean_value=0):
d = caffe.NetSpec()
d.data, d.label=L.Data(source=dbfile, backend = P.Data.LMDB, batch_size=batch_size, ntop=2, transform_param=dict(scale=0.00390625))
d.ip1 = L.InnerProduct(d.data, num_output=500, weight_filler=dict(type='xavier'))
d.relu1 = L.ReLU(d.ip1, in_place=True)
d.ip2 = L.InnerProduct(d.relu1, num_output=10, weight_filler=dict(type='xavier'))
d.loss = L.SoftmaxWithLoss(d.ip2, d.label)
d.accu = L.Accuracy(d.ip2, d.label, include={'phase':caffe.TEST})
return d.to_proto()
def main():
with open( 'auto_train00.prototxt', 'w') as f:
f.write(str(net( 'mnist/mnist_train_lmdb', 64)))
with open('auto_test00.prototxt', 'w') as f:
f.write(str(net('mnist/mnist_test_lmdb', 100)))
solver = caffe.SGDSolver("hbk_mnist_solver_py.prototxt")
solver.net.forward()
solver.test_nets[0].forward()
solver.step(1)
if __name__=="__main__":
main()
链接:https://pan.baidu.com/s/1XRQNQdQUVUjPQFWUykYXGQ
提取码:r4e0
复制这段内容后打开百度网盘手机App,操作更方便哦