End-to-End Answer Chunk Extraction and Ranking for Reading Comprehension

论文摘要

论文目的

This paper proposes dynamic chunk reader (DCR), an end-to-end neural reading comprehension (RC) model that is able to extract and rank a set of answer candidates from a given document to answer questions.
这篇文章提出了一种端对端的神经网络阅读理解模型--动态块阅读器,能够从文档中提取候选答案并对答案进行排序。

模型概述

dataset: Stanford Question Answering Dataset (SQuAD) which contains a variety of human-generated factoid and non-factoid questions, have shown the effectiveness of above three contributions.
DCR encodes a document and an input question with recurrent neural networks, and then applies a word-by-word attention mechanism to acquire question-aware representations for the document, followed by the generation of chunk representations and a ranking module to propose the top-ranked chunk as the answer.
DCR用RNN对文章和问题进行编码,然后应用word-by-word的注意力机制来获取问题敏感的文档表达,接下用生成答案的块表达,最后用一个排序模块选择得分最高的答案作为最终结果。

结果

DCR achieves state-of-the-art exact match and F1 scores on the SQuAD dataset.
实验结果表明,DCR在SQuAD数据集上EM值和F1值都达到了理想的结果。

研究背景

** Reading comprehension-based question answering (RCQA)**
基于阅读理解的问答研究

  • The task of answering a question with a chunk of text taken from related document(s).
    任务是从相关文档中提取一段文本作为答案。
  • In previous models, an answer boundary is either easy to determine or already given.
    在之前的提出的模型中,问题答案或者容易确定,或者已经给定。
  • In the real-world QA scenario, people may ask questions about both entities (factoid) and non-entities such as explanations and reasons (non-factoid)
    在现实世界的QA场景中,问题的形式既有关于实体的(factoid),又有非实体的(non-factoid),比如寻求解释或者原因(non-factoid)。

问题类型:factoid&non-factoid###

Q1和 Q2属于factoid类型的问题,Q3属于non-factoid类型的问题


End-to-End Answer Chunk Extraction and Ranking for Reading Comprehension_第1张图片
Paste_Image.png

** Dynamic chunk reader **

  • uses deep networks to learn better representations for candidate answer chunks, instead of using fixed feature representations
    Second
    用深度网络学习候选答案更好的表达
  • it represents answer candidates as chunks, instead of word-level representations
    候选答案是基于块表达,而不是词表达。

** Contributions**
three-fold

  • propose a novel neural network model for joint candidate answer chunking and ranking.
    论文提出一个新的神经网络模型以结合候选答案块和排序,答案以一种端对端的形式构建和排序。
    In this model the candidate answer chunks are dynamically constructed and ranked in an end-to-end manner
  • propose a new ** question-attention mechanism ** to enhance passage word representation used to construct chunk representations.
    提出了一种新的问题-注意力机制来加强段落中词语表达,用来构建块表达
  • propose several simple but effective features to strengthen the attention mechanism, which fundamentally improves candidate ranking。
    提出了几种简单但有效的特征来增强注意力机制,这种做法能从根本上排序部分的准确性。

论文要点

问题定义

基于一个段落P,通过选择一个句子A,回答一个事实型的或者非事实型的问题Q。
Q,P,A都是句子序列,共用一个词汇表V。
训练集的组成为三元组(P,Q,A)
RC任务类型:
quiz-style,MovieQA:问题有多个选项
Cloze-style:通常通过代替在句子中的空格来自动生成答案。
answer selection:从文本中选择一部分作为答案。
TREC-QA:从给定的多个段落文本中提起factoid答案
bAbI::推断意图
SQuAD数据集:满足事实型和非事实型的答案提取,更接近于现实世界

Baseline: Chunk-and-Rank Pipeline with Neural RC

for cloze-style tasks
修改了一个用于cloze-style tasks的最好的模型,用于这篇文章的答案提取。
It has two main components: 1)

  • Answer Chunking: a standalone answer chunker, which is trained to produce overlapping candidate chunks,
  • Feature Extraction and Ranking:a neural RC model, which is used to score each word in a given passage to be used thereafter for generating chunk scores.
    1)独立的答案区块,被训练以生成重叠候选区块;2)一个神经RC模型,被用来给文章中的每个词进行打分。具体解释如下:

DCR

End-to-End Answer Chunk Extraction and Ranking for Reading Comprehension_第2张图片
Paste_Image.png

DCR works in four steps:

  • First, the encoder layer encode passage and question separately, by using bidirectional recurrent neural networks (RNN).
    编码层:应用bi-directional RNN encoder 对文章Pi 问题 Qi 进行编码,得到每一个词的隐藏状态。
  • Second, the attention layer calculates the relevance of each passage word to the question.word-by-word style attention methods
    注意力层:应用word-by-word的注意力机制,计算段落中的每个单词到问题的相关度
  • Third, the chunk representation layer dynamically extracts the candidate chunks from the given passage, and create chunk representation that encodes the contextual information of each chunk.
    在得到attention layer的输出后,块表示层能动态生成一个候选答案块表示。首先是确定候选答案块的边界,然后找到一种方式pooling
  • Fourth, the ranker layer scores the relevance between the representations of a chunk and the given question, and ranks all candidate chunks using a softmax layer.
    排序层:计算每一个答案和问题的相关度(余弦相似性),用一个softmax 层对候选答案进行排序。

实验

Stanford Question Answering

Dataset (SQuAD)
特点:包含了factoid和non-factoid questions
100k 的来自维基百科的536篇文章的问题-文章对

input word vector:5个部分

  1. a pre-trained 300-dimensional GloVe embedding
  • a one-hot encoding (46 dimensions) for the part-of-speech (POS) tag of w;
    一个46维的one-hot向量,用来表示词语的词性
  • a one-hot encoding (14 dimensions) for named entity (NE) tag of w;
    一个14维的one-hot 向量 ,用来小时词语的命名实体属性
  • a binary value indicating whether w’s surface form is the same to any word in the quesiton;
    一个二元值,表征一个词语的表面形式是否与问题的其他词语相同
  • if the lemma form of w is the same to any word in the question;

训练

We pre-processed the SQuAD dataset using Stanford CoreNLP tool5 (Manning et al.2014) with its default setting to tokenize the text and obtainthe POS and NE annotations.
用 Stanford CoreNLP tool5这个工具对SQuAD 数据集进行预处理
To train our model, we used stochastic gradient descent with the ADAM optimizer

实验结果

End-to-End Answer Chunk Extraction and Ranking for Reading Comprehension_第3张图片
Paste_Image.png

We also studied how each component in our model contributes to the overall performance.


End-to-End Answer Chunk Extraction and Ranking for Reading Comprehension_第4张图片
Paste_Image.png

总结

在解决QA问题上,之前提出的模型都只针对factoid questions:或者预测单个命名实体作为答案,或者从预先定义的候选列表中选择一个答案。
本论文论文针对QA问题提出了一种新型的神经阅读理解模型。模型创新点在于:
提出了一个联合神经网络模型,并用一个新型的注意力模型和5个特征来加强,既可以针对factoid questions,也可以针对non-factoid questions。
不足:在预测长答案上仍然需要改进。

你可能感兴趣的:(End-to-End Answer Chunk Extraction and Ranking for Reading Comprehension)