1. 递归函数
在函数内部,可以调用其他函数。如果一个函数在内部调用自身本身,这个函数就是递归函数。
举个例子,我们来计算阶乘n! = 1 x 2 x 3 x ... x n,用函数fact(n)表示,可以看出:
fact(n) = n! = 1 x 2 x 3 x ... x (n-1) x n = (n-1)! x n = fact(n-1) x n
所以,fact(n)可以表示为n x fact(n-1),只有n=1时需要特殊处理。
于是,fact(n)用递归的方式写出来就是:
def fact(n):
if n==1:
return 1
return n * fact(n - 1)
上面就是一个递归函数。可以试试:
>>> fact(1)
1
>>> fact(5)
120
>>> fact(100)
93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000
如果我们计算fact(5),可以根据函数定义看到计算过程如下:
===> fact(5)
===> 5 * fact(4)
===> 5 * (4 * fact(3))
===> 5 * (4 * (3 * fact(2)))
===> 5 * (4 * (3 * (2 * fact(1))))
===> 5 * (4 * (3 * (2 * 1)))
===> 5 * (4 * (3 * 2))
===> 5 * (4 * 6)
===> 5 * 24
===> 120
递归函数的优点是定义简单,逻辑清晰。理论上,所有的递归函数都可以写成循环的方式,但循环的逻辑不如递归清晰。
汉诺塔方法用递归实现:
# 其实是不断变换 a,b,c 的位置
def move(n, a, b, c):
if n > 1:
move(n-1, a, c, b)
move(1, a, b, c)
move(n-1, b, a, c)
elif n == 1:
print(a + ' --> ' + c)
move(3, 'A', 'B', 'C')
2.高级特性
在Python中,代码不是越多越好,而是越少越好。代码不是越复杂越好,而是越简单越好。
基于这一思想,我们来介绍Python中非常有用的高级特性,1行代码能实现的功能,决不写5行代码。请始终牢记,代码越少,开发效率越高。
2.1 切片
取一个list或tuple的部分元素是非常常见的操作。
>>> L = ['Michael', 'Sarah', 'Tracy', 'Bob', 'Jack']
对这种经常取指定索引范围的操作,用循环十分繁琐,因此,Python提供了切片(Slice)操作符,能大大简化这种操作。
对应上面的问题,取前3个元素,用一行代码就可以完成切片:
>>> L[0:3]
['Michael', 'Sarah', 'Tracy']
L[0:3]表示,从索引0开始取,直到索引3为止,但不包括索引3。即索引0,1,2,正好是3个元素。
如果第一个索引是0,还可以省略:
>>> L[:3]
['Michael', 'Sarah', 'Tracy']
也可以从索引1开始,取出2个元素出来:
>>> L[1:3]
['Sarah', 'Tracy']
类似的,既然Python支持L[-1]取倒数第一个元素,那么它同样支持倒数切片,试试:
>>> L[-2:]
['Bob', 'Jack']
>>> L[-2:-1]
['Bob']
记住倒数第一个元素的索引是-1。
切片操作十分有用。我们先创建一个0-99的数列:
前10个数,每两个取一个:
>>> L[:10:2]
[0, 2, 4, 6, 8]
所有数,每5个取一个:
>>> L[::5]
[0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95]
甚至什么都不写,只写[:]就可以原样复制一个list:
>>> L[:]
[0, 1, 2, 3, ..., 99]
tuple也是一种list,唯一区别是tuple不可变。因此,tuple也可以用切片操作,只是操作的结果仍是tuple:
>>> (0, 1, 2, 3, 4, 5)[:3]
(0, 1, 2)
字符串'xxx'也可以看成是一种list,每个元素就是一个字符。因此,字符串也可以用切片操作,只是操作结果仍是字符串:
>>> 'ABCDEFG'[:3]
'ABC'
>>> 'ABCDEFG'[::2]
'ACEG'
2.2 迭代
如果给定一个list或tuple,我们可以通过for循环来遍历这个list或tuple,这种遍历我们称为迭代(Iteration)。
list这种数据类型虽然有下标,但很多其他数据类型是没有下标的,但是,只要是可迭代对象,无论有无下标,都可以迭代,比如dict就可以迭代:
>>> d = {'a': 1, 'b': 2, 'c': 3}
>>> for key in d:
... print(key)
...
a
c
b
因为dict的存储不是按照list的方式顺序排列,所以,迭代出的结果顺序很可能不一样。
默认情况下,dict迭代的是key。如果要迭代value,可以用for value in d.values(),如果要同时迭代key和value,可以用for k, v in d.items()。
由于字符串也是可迭代对象,因此,也可以作用于for循环:
>>> for ch in 'ABC':
... print(ch)
...
A
B
C
所以,当我们使用for循环时,只要作用于一个可迭代对象,for循环就可以正常运行,而我们不太关心该对象究竟是list还是其他数据类型。
那么,如何判断一个对象是可迭代对象呢?方法是通过collections模块的Iterable类型判断:
>>> from collections import Iterable
>>> isinstance('abc', Iterable) # str是否可迭代
True
>>> isinstance([1,2,3], Iterable) # list是否可迭代
True
>>> isinstance(123, Iterable) # 整数是否可迭代
False
最后一个小问题,如果要对list实现类似Java那样的下标循环怎么办?Python内置的enumerate函数可以把一个list变成索引-元素对,这样就可以在for循环中同时迭代索引和元素本身:
>>> for i, value in enumerate(['A', 'B', 'C']):
... print(i, value)
...
0 A
1 B
2 C
最后一个小问题,如果要对list实现类似Java那样的下标循环怎么办?Python内置的enumerate函数可以把一个list变成索引-元素对,这样就可以在for循环中同时迭代索引和元素本身:
>>> for i, value in enumerate(['A', 'B', 'C']):
... print(i, value)
...
0 A
1 B
2 C
上面的for循环里,同时引用了两个变量,在Python里是很常见的,比如下面的代码:
>>> for x, y in [(1, 1), (2, 4), (3, 9)]:
... print(x, y)
...
1 1
2 4
3 9
任何可迭代对象都可以作用于for循环,包括我们自定义的数据类型,只要符合迭代条件,就可以使用for循环
2.3 列表的生成
列表生成式即List Comprehensions,是Python内置的非常简单却强大的可以用来创建list的生成式。
举个例子,要生成list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]可以用list(range(1, 11)):
>>> list(range(1, 11))
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
列表生成式则可以用一行语句代替循环生成上面的list:
>>> [x * x for x in range(1, 11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
写列表生成式时,把要生成的元素x * x放到前面,后面跟for循环,就可以把list创建出来,十分有用,多写几次,很快就可以熟悉这种语法。
for循环后面还可以加上if判断,这样我们就可以筛选出仅偶数的平方:
>>> [x * x for x in range(1, 11) if x % 2 == 0]
[4, 16, 36, 64, 100]
还可以使用两层循环,可以生成全排列:
>>> [m + n for m in 'ABC' for n in 'XYZ']
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']
for循环其实可以同时使用两个甚至多个变量,比如dict的items()可以同时迭代key和value:
>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> for k, v in d.items():
... print(k, '=', v)
...
y = B
x = A
z = C
因此,列表生成式也可以使用两个变量来生成list:
>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> [k + '=' + v for k, v in d.items()]
['y=B', 'x=A', 'z=C']
最后把一个list中所有的字符串变成小写:
>>> L = ['Hello', 'World', 'IBM', 'Apple']
>>> [s.lower() for s in L]
['hello', 'world', 'ibm', 'apple']
作业:修改列表生成式,让列表显示只显示字符串且全部为小写字母
L1 = ['Hello', 'World', 18, 'Apple', None]
L2 = [ A.lower() for A in L1 if isinstance(A, str)]
#print(L2)
fu