yolov3计算mAP有两种方法,第一种是使用faster rcnn中的voc_eval.py进行计算,另一种是通过修改yolov3中的代码进行计算。相比较而言第一种方法简单一些。
在yolov3中运行vaild命令进行测试。vaild命令执行的代码如下
void validate_detector(char *datacfg, char *cfgfile, char *weightfile, char *outfile)
{
int j;
list *options = read_data_cfg(datacfg);
char *valid_images = option_find_str(options, "valid", "data/train.list");
char *name_list = option_find_str(options, "names", "data/names.list");
char *prefix = option_find_str(options, "results", "results");
char **names = get_labels(name_list);
//中间省略了部分代码
} else {
if(!outfile) outfile = "comp4_det_test_";
fps = calloc(classes, sizeof(FILE *));
for(j = 0; j < classes; ++j){
snprintf(buff, 1024, "%s/%s%s.txt", prefix, outfile, names[j]);
fps[j] = fopen(buff, "w");
}
}
从代码中可以看出,程序首先会根据你的数据集的类别创建对应的txt文件。创建的txt文件用来保存每一个类别检测到的目标框。txt文件创建的位置为 prefix + outfile + names[j], 其中prefix由data文件中的results指定, outfile默认为“comp4_det_test_”。
运行完成后,在对应的位置会看到生成的文件
我这里有6类,所以就生成了6个文件。有了这些文件后,就可以了使用voc_eval.py进行计算了。具体计算方法参见我的另一篇博客https://blog.csdn.net/sihaiyinan/article/details/89417963。
Windows版本下的darknet有计算mAP和recall的代码,把这部分代码稍加修改放到ubuntu版本的darknet中就可以了直接进行recall和mAP的计算了。代码修改后别忘了重新make一下。
1. 计算recall
在detector.c文件中有计算recall的函数,不过不能直接使用。直接把下面的代码替换成原来的validate_detector_recall函数即可。recall计算命令为
./darknet detector recall PATH/TO/*.data PATH/TO/*.cfg PATH/TO/*.weights
void validate_detector_recall(char *datacfg, char *cfgfile, char *weightfile)
{
network *net = load_network(cfgfile, weightfile, 0); //加载网络
set_batch_network(net, 1);
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
srand(time(0));
list *options = read_data_cfg(datacfg); //读取data文件
char *valid_images = option_find_str(options, "valid", "data/train.list"); //读取验证图像
list *plist = get_paths(valid_images);
char **paths = (char **)list_to_array(plist);
//layer l = net->layers[net->n-1];
int j, k;
int m = plist->size; //验证图像的数量
int i=0;
float thresh = .001;
float iou_thresh = .5;
float nms = .4;
int total = 0;
int correct = 0;
int proposals = 0;
float avg_iou = 0;
for (i = 0; i < m; ++i) {
char *path = paths[i]; //the i-th image's path
image orig = load_image_color(path, 0, 0);
image sized = resize_image(orig, net->w, net->h);
char *id = basecfg(path);
network_predict(net, sized.data);
int nboxes = 0;
detection *dets = get_network_boxes(net, sized.w, sized.h, thresh, .5, 0, 1, &nboxes);
if (nms) do_nms_obj(dets, nboxes, 1, nms); //抑制局部非最大
char labelpath[4096];
find_replace(path, "images", "labels", labelpath);
find_replace(labelpath, "JPEGImages", "labels", labelpath);
find_replace(labelpath, ".jpg", ".txt", labelpath);
find_replace(labelpath, ".JPEG", ".txt", labelpath);
int num_labels = 0;
box_label *truth = read_boxes(labelpath, &num_labels); //read the normalized image data in 'labels' folder
for (k = 0; k < nboxes; ++k) {
if (dets[k].objectness > thresh) {
++proposals;
}
}
for (j = 0; j < num_labels; ++j) {
++total;
box t = { truth[j].x, truth[j].y, truth[j].w, truth[j].h };
float best_iou = 0;
for (k = 0; k < nboxes; ++k) { //many boxs detected about the one object in the image, select the best box
float iou = box_iou(dets[k].bbox, t); //compute IoU
if (dets[k].objectness > thresh && iou > best_iou) {
best_iou = iou;
}
}
avg_iou += best_iou;
if (best_iou > iou_thresh) {
++correct;
}
}
//fprintf(stderr, " - %s\n - %s\n ", paths[i], labelpath);
fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals / (i + 1), avg_iou * 100 / total, 100.*correct / total);
free(id);
free_image(orig);
free_image(sized);
}
}
2. 计算mAP
在Windows版本中,计算mAP使用的是map命令,不过ubuntu下darknet好像没有这个命令,需要手动添加。添加后的运行命令为
./darknet detector map PATH/TO/*.data PATH/TO/*.cfg PATH/TO/*.weights
添加步骤:
首先在detector.c文件的最后如下的代码中:
if(0==strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh, hier_thresh, outfile, fullscreen);
else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear);
else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights, outfile);
else if(0==strcmp(argv[2], "valid2")) validate_detector_flip(datacfg, cfg, weights, outfile);
else if(0==strcmp(argv[2], "recall")) validate_detector_recall(datacfg, cfg, weights);
加上
else if(0==strcmp(argv[2], "map")) validate_detector_map(datacfg, cfg, weights, thresh);
然后在其他任意位置粘贴如下函数代码:
typedef struct {
box b;
float p;
int class_id;
int image_index;
int truth_flag;
int unique_truth_index;
} box_prob;
int detections_comparator(const void *pa, const void *pb)
{
box_prob a = *(box_prob *)pa;
box_prob b = *(box_prob *)pb;
float diff = a.p - b.p;
if (diff < 0) return 1;
else if (diff > 0) return -1;
return 0;
}
void validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float thresh_calc_avg_iou)
{
list *options = read_data_cfg(datacfg); //get .data file
char *valid_images = option_find_str(options, "valid", "data/train.txt"); //point to the path of valid images
char *difficult_valid_images = option_find_str(options, "difficult", NULL); //get the path to the 'difficult', if it doesn't exist,replace it with NULL
char *name_list = option_find_str(options, "names", "data/names.list"); // find name of each category
char **names = get_labels(name_list);
//char *mapf = option_find_str(options, "map", 0); // get the 'map', what is the map
//int *map = 0;
//if (mapf) map = read_map(mapf);
FILE* reinforcement_fd = NULL;
network *net = load_network(cfgfile, weightfile, 0);
set_batch_network(net, 1);
//fuse_conv_batchnorm(net);
//calculate_binary_weights(net);
srand(time(0));
list *plist = get_paths(valid_images);
char **paths = (char **)list_to_array(plist);
char **paths_dif = NULL;
if (difficult_valid_images) {
list *plist_dif = get_paths(difficult_valid_images);
paths_dif = (char **)list_to_array(plist_dif);
}
layer l = net->layers[net->n - 1];
int classes = l.classes;
int m = plist->size;
int i = 0;
int t;
const float thresh = .005;
const float nms = .45;
const float iou_thresh = 0.5;
int nthreads = 4;
image *val = calloc(nthreads, sizeof(image));
image *val_resized = calloc(nthreads, sizeof(image));
image *buf = calloc(nthreads, sizeof(image));
image *buf_resized = calloc(nthreads, sizeof(image));
pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
load_args args = {0};
args.w = net->w;
args.h = net->h;
//args.type = IMAGE_DATA;
args.type = LETTERBOX_DATA;
//const float thresh_calc_avg_iou = 0.24;
float avg_iou = 0;
int tp_for_thresh = 0;
int fp_for_thresh = 0;
box_prob *detections = calloc(1, sizeof(box_prob));
int detections_count = 0;
int unique_truth_count = 0;
int *truth_classes_count = calloc(classes, sizeof(int));
for (t = 0; t < nthreads; ++t) {
args.path = paths[i + t];
args.im = &buf[t];
args.resized = &buf_resized[t];
thr[t] = load_data_in_thread(args);
}
time_t start = time(0);
for (i = nthreads; i < m + nthreads; i += nthreads) {
fprintf(stderr, "%d\n", i);
for (t = 0; t < nthreads && i + t - nthreads < m; ++t) {
pthread_join(thr[t], 0);
val[t] = buf[t];
val_resized[t] = buf_resized[t];
}
for (t = 0; t < nthreads && i + t < m; ++t) {
args.path = paths[i + t];
args.im = &buf[t];
args.resized = &buf_resized[t];
thr[t] = load_data_in_thread(args);
}
for (t = 0; t < nthreads && i + t - nthreads < m; ++t) {
const int image_index = i + t - nthreads;
char *path = paths[image_index];
char *id = basecfg(path);
float *X = val_resized[t].data;
network_predict(net, X);
int nboxes = 0;
float hier_thresh = 0;
detection *dets;
if (args.type == LETTERBOX_DATA) {
//int letterbox = 1;
dets = get_network_boxes(net, val[t].w, val[t].h, thresh, hier_thresh, 0, 1, &nboxes);
}
else {
//int letterbox = 0;
dets = get_network_boxes(net, 1, 1, thresh, hier_thresh, 0, 0, &nboxes);
}
//detection *dets = get_network_boxes(&net, val[t].w, val[t].h, thresh, hier_thresh, 0, 1, &nboxes, letterbox); // for letterbox=1
if (nms) do_nms_sort(dets, nboxes, l.classes, nms);
char labelpath[4096];
find_replace(path, "images", "labels", labelpath);
find_replace(labelpath, "JPEGImages", "labels", labelpath);
find_replace(labelpath, ".jpg", ".txt", labelpath);
find_replace(labelpath, ".JPEG", ".txt", labelpath);
int num_labels = 0;
box_label *truth = read_boxes(labelpath, &num_labels);
int i, j;
for (j = 0; j < num_labels; ++j) {
truth_classes_count[truth[j].id]++;
}
// difficult
box_label *truth_dif = NULL;
int num_labels_dif = 0;
if (paths_dif)
{
char *path_dif = paths_dif[image_index];
char labelpath_dif[4096];
//replace_image_to_label(path_dif, labelpath_dif);
find_replace(path_dif, "images", "labels", labelpath_dif);
find_replace(labelpath_dif, "JPEGImages", "labels", labelpath_dif);
find_replace(labelpath_dif, ".jpg", ".txt", labelpath_dif);
find_replace(labelpath_dif, ".JPEG", ".txt", labelpath_dif);
truth_dif = read_boxes(labelpath_dif, &num_labels_dif);
}
const int checkpoint_detections_count = detections_count;
for (i = 0; i < nboxes; ++i) {
int class_id;
for (class_id = 0; class_id < classes; ++class_id) {
float prob = dets[i].prob[class_id];
if (prob > 0) {
detections_count++;
detections = realloc(detections, detections_count * sizeof(box_prob));
detections[detections_count - 1].b = dets[i].bbox;
detections[detections_count - 1].p = prob;
detections[detections_count - 1].image_index = image_index;
detections[detections_count - 1].class_id = class_id;
detections[detections_count - 1].truth_flag = 0;
detections[detections_count - 1].unique_truth_index = -1;
int truth_index = -1;
float max_iou = 0;
for (j = 0; j < num_labels; ++j)
{
box t = { truth[j].x, truth[j].y, truth[j].w, truth[j].h };
//printf(" IoU = %f, prob = %f, class_id = %d, truth[j].id = %d \n",
//box_iou(dets[i].bbox, t), prob, class_id, truth[j].id);
float current_iou = box_iou(dets[i].bbox, t);
if (current_iou > iou_thresh && class_id == truth[j].id) {
if (current_iou > max_iou) {
max_iou = current_iou;
truth_index = unique_truth_count + j;
}
}
}
// best IoU
if (truth_index > -1) {
detections[detections_count - 1].truth_flag = 1;
detections[detections_count - 1].unique_truth_index = truth_index;
}
else {
// if object is difficult then remove detection
for (j = 0; j < num_labels_dif; ++j) {
box t = { truth_dif[j].x, truth_dif[j].y, truth_dif[j].w, truth_dif[j].h };
float current_iou = box_iou(dets[i].bbox, t);
if (current_iou > iou_thresh && class_id == truth_dif[j].id) {
--detections_count;
break;
}
}
}
// calc avg IoU, true-positives, false-positives for required Threshold
if (prob > thresh_calc_avg_iou) {
int z, found = 0;
for (z = checkpoint_detections_count; z < detections_count-1; ++z)
if (detections[z].unique_truth_index == truth_index) {
found = 1; break;
}
if(truth_index > -1 && found == 0) {
avg_iou += max_iou;
++tp_for_thresh;
}
else
fp_for_thresh++;
}
}
}
}
unique_truth_count += num_labels;
//static int previous_errors = 0;
//int total_errors = fp_for_thresh + (unique_truth_count - tp_for_thresh);
//int errors_in_this_image = total_errors - previous_errors;
//previous_errors = total_errors;
//if(reinforcement_fd == NULL) reinforcement_fd = fopen("reinforcement.txt", "wb");
//char buff[1000];
//sprintf(buff, "%s\n", path);
//if(errors_in_this_image > 0) fwrite(buff, sizeof(char), strlen(buff), reinforcement_fd);
free_detections(dets, nboxes);
free(id);
free_image(val[t]);
free_image(val_resized[t]);
}
}
if((tp_for_thresh + fp_for_thresh) > 0)
avg_iou = avg_iou / (tp_for_thresh + fp_for_thresh);
// SORT(detections)
qsort(detections, detections_count, sizeof(box_prob), detections_comparator);
typedef struct {
double precision;
double recall;
int tp, fp, fn;
} pr_t;
// for PR-curve
pr_t **pr = calloc(classes, sizeof(pr_t*));
for (i = 0; i < classes; ++i) {
pr[i] = calloc(detections_count, sizeof(pr_t));
}
printf("detections_count = %d, unique_truth_count = %d \n", detections_count, unique_truth_count);
int *truth_flags = calloc(unique_truth_count, sizeof(int));
int rank;
for (rank = 0; rank < detections_count; ++rank) {
if(rank % 100 == 0)
printf(" rank = %d of ranks = %d \r", rank, detections_count);
if (rank > 0) {
int class_id;
for (class_id = 0; class_id < classes; ++class_id) {
pr[class_id][rank].tp = pr[class_id][rank - 1].tp;
pr[class_id][rank].fp = pr[class_id][rank - 1].fp;
}
}
box_prob d = detections[rank];
// if (detected && isn't detected before)
if (d.truth_flag == 1) {
if (truth_flags[d.unique_truth_index] == 0)
{
truth_flags[d.unique_truth_index] = 1;
pr[d.class_id][rank].tp++; // true-positive
}
}
else {
pr[d.class_id][rank].fp++; // false-positive
}
for (i = 0; i < classes; ++i)
{
const int tp = pr[i][rank].tp;
const int fp = pr[i][rank].fp;
const int fn = truth_classes_count[i] - tp; // false-negative = objects - true-positive
pr[i][rank].fn = fn;
if ((tp + fp) > 0) pr[i][rank].precision = (double)tp / (double)(tp + fp);
else pr[i][rank].precision = 0;
if ((tp + fn) > 0) pr[i][rank].recall = (double)tp / (double)(tp + fn);
else pr[i][rank].recall = 0;
}
}
free(truth_flags);
double mean_average_precision = 0;
for (i = 0; i < classes; ++i) {
double avg_precision = 0;
int point;
for (point = 0; point < 11; ++point) {
double cur_recall = point * 0.1;
double cur_precision = 0;
for (rank = 0; rank < detections_count; ++rank)
{
if (pr[i][rank].recall >= cur_recall) { // > or >=
if (pr[i][rank].precision > cur_precision) {
cur_precision = pr[i][rank].precision;
}
}
}
printf("class_id = %d, point = %d, cur_recall = %.4f, cur_precision = %.4f \n", i, point, cur_recall, cur_precision);
avg_precision += cur_precision;
}
avg_precision = avg_precision / 11; // ??
printf("class_id = %d, name = %s, \t ap = %2.2f %% \n", i, names[i], avg_precision*100);
mean_average_precision += avg_precision;
}
printf("---------------------caculate end!!------------------------\n");
const float cur_precision = (float)tp_for_thresh / ((float)tp_for_thresh + (float)fp_for_thresh);
const float cur_recall = (float)tp_for_thresh / ((float)tp_for_thresh + (float)(unique_truth_count - tp_for_thresh));
const float f1_score = 2.F * cur_precision * cur_recall / (cur_precision + cur_recall);
printf(" for thresh = %1.2f, precision = %1.2f, recall = %1.2f, F1-score = %1.2f \n",
thresh_calc_avg_iou, cur_precision, cur_recall, f1_score);
printf(" for thresh = %0.2f, TP = %d, FP = %d, FN = %d, average IoU = %2.2f %% \n",
thresh_calc_avg_iou, tp_for_thresh, fp_for_thresh, unique_truth_count - tp_for_thresh, avg_iou * 100);
mean_average_precision = mean_average_precision / classes;
printf("\n mean average precision (mAP) = %f, or %2.2f %% \n", mean_average_precision, mean_average_precision*100);
for (i = 0; i < classes; ++i) {
free(pr[i]);
}
free(pr);
free(detections);
free(truth_classes_count);
fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
if (reinforcement_fd != NULL) fclose(reinforcement_fd);
}
添加完成后就可以直接使用map命令进行mAP的计算了。
3. 修改test批量检测图像并画出目标框
void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, float hier_thresh, char *outfile, int fullscreen)
{
list *options = read_data_cfg(datacfg);
char *name_list = option_find_str(options, "names", "data/names.list");
char **names = get_labels(name_list);
char *test_images = option_find_str(options, "test", "data/test.list");
printf("test path is %s\n", test_images);
list *plist = get_paths(test_images);
char **paths = (char **)list_to_array(plist);
image **alphabet = load_alphabet();
network *net = load_network(cfgfile, weightfile, 0);
set_batch_network(net, 1);
srand(2222222);
double time;
char buff[256];
char *input = buff;
float nms=.45;
int img_count = 0;
int num = plist->size;
double total_time = what_time_is_it_now();
int i = 0;
while(i < num)
{
filename = *paths;
if(filename){
strncpy(input, filename, 256);
} else {
printf("Enter Image Path: ");
fflush(stdout);
input = fgets(input, 256, stdin);
if(!input) return;
strtok(input, "\n");
}
paths++;
image im = load_image_color(input,0,0);
image sized = letterbox_image(im, net->w, net->h);
layer l = net->layers[net->n-1];
float *X = sized.data;
time=what_time_is_it_now();
network_predict(net, X);
printf("%s: Predicted in %f seconds.\n", input, what_time_is_it_now()-time);
int nboxes = 0;
detection *dets = get_network_boxes(net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes);
//printf("%d\n", nboxes);
//if (nms) do_nms_obj(boxes, probs, l.w*l.h*l.n, l.classes, nms);
if (nms) do_nms_sort(dets, nboxes, l.classes, nms);
draw_detections(im, dets, nboxes, thresh, names, alphabet, l.classes);
free_detections(dets, nboxes);
char *re_output_path = buff;
find_replace(input, "JPEGImages", "Rec_result", re_output_path);
save_image(im, re_output_path);
// #ifdef OPENCV
// make_window("predictions", 512, 512, 0);
// show_image(im, "predictions", 0);
// #endif
img_count++;
printf("image-number:%d\n", img_count);
free_image(im);
free_image(sized);
i++;
}
printf("The test took a total of %f seconds.\n", what_time_is_it_now() - total_time);
}