python 医学_python opencv 医学处理

机器视觉实验八医学处理

一、实验目的

(1)能利用python编写程序实现相关图片处理功能;

(2)深入了解机器视觉相关应用领域。

二、题目描述

(1)读取图像并展示;

(2)用Niblack方法对灰度图进行局部动态阈值分割并进行展示;

(3)对图像进行反色;

(4)对图像进行扩展;

(5)选择满足面积要求的目标输出(针对黑色背景白色目标的二值图);

(6)输出最大连通图;

(7)对最大连通图进行细化;

(8)提取最大连通图的轮廓;

(9)对轮廓图像进行反色输出最终效果图。

三、实现过程及运行效果

实验图片如下:

图3.1原图像

实验步骤:

(1)读取图像并展示;

(2)用Niblack方法对灰度图进行局部动态阈值分割并进行展示;

代码实例:

import cv2

import numpy as np

# 读取图像

img1=cv2.imread('vas0.bmp')

cv2.imshow('img1',img1)

cv2.waitKey(0)

#局部阈值

gray = cv2.cvtColor(img1, cv2.COLOR_RGB2GRAY)  #把输入图像灰度化

#自适应阈值化能够根据图像不同区域亮度分布,改变阈值

binary =  cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY, 35,3)

cv2.namedWindow("binary1", cv2.WINDOW_NORMAL)

cv2.imshow("binary1", binary)

cv2.waitKey(0)

运行效果:

3.2.1读取原图

(3)对图像进行反色;

代码实例:

#反色

img2 = binary.copy()

cv2.threshold(binary,80,255,0,binary)

for i in range(0,binary.shape[0]):

for j in range(0,binary.shape[1]):

img2[i,j] = 255-binary[i,j]

cv2.imshow("img2", img2)

cv2.waitKey(0)

运行效果:

图3.3.1反色图

(4)对图像进行扩展;

代码实例:

#图像扩展

img3 = cv2.copyMakeBorder(img2,1,1,1,1,cv2.BORDER_REPLICATE)

cv2.imshow("img3 ", img3 )

cv2.waitKey(0)

运行效果:

图3.4.1扩展图

(5)选择满足面积要求的目标输出(针对黑色背景白色目标的二值图);

代码实例:

#选择满足面积要求的目标输出(针对黑色背景白色目标的二值图)

# 查找轮廓

contours,hierarchy = cv2.findContours(img3, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)

#消除小面积

for i in range(len(contours)):

area = cv2.contourArea(contours[i])

if area < 150:

cv2.drawContours(img3,[contours[i]],0,0,-1)

cv2.imshow("img3 ",img3 )

cv2.waitKey(0)

图3.5.1消除小面积图

(6)输出最大连通图;

代码实例:

#面积滤波,用连通区域的面积除以连通区域包络盒的面积,仅保留当这个比值小于用户所给的div的值时的连通区域

img4=img3.copy()

contours1,hierarchy = cv2.findContours(img4, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)

for j in range(len(contours1)):

area1 = cv2.contourArea(contours1[j])

print(area1)

if area1 ==157.0:

cv2.drawContours(img4,[contours1[j]],0,0,-1)

elif area1==261.5:

cv2.drawContours(img4,[contours1[j]],0,0,-1)

elif area1==568.0:

cv2.drawContours(img4,[contours1[j]],0,0,-1)

cv2.imshow('img4',img4)

cv2.waitKey(0)

运行效果:

图3.6.1最大连通图

(7)对最大连通图进行细化;

代码实例:

#对图像进行反色

img5 = img4.copy()

ret,img5 = cv2.threshold(img4,80,255,cv2.THRESH_BINARY)

img6 = cv2.bitwise_not(img4)

def VThin(image, array):

h,w= image.shape[:2]

NEXT = 1

for i in range(h):

for j in range(w):

if NEXT == 0:

NEXT = 1

else:

M = image[i, j-1] + image[i,j] + image[i, j+1] if 0

if image[i, j] == 0 and M != 0:

a = [0] * 9

for k in range(3):

for l in range(3):

if-1

a[k*3 + l] = 1

sum = a[0]*1 + a[1]*2 + a[2]*4 + a[3]*8 + a[5]*16 + a[6]*32 + a[7]*64 + a[8]*128

image[i,j] = array[sum]*255

if array[sum] == 1:

NEXT = 0

return image

def HThin(image, array):

h, w = image.shape[:2]

NEXT = 1

for j in range(w):

for i in range(h):

if NEXT == 0:

NEXT = 1

else:

M = image[i-1, j] + image[i, j] + image[i+1, j] if 0

if image[i, j] == 0 and M != 0:

a = [0] * 9

for k in range(3):

for l in range(3):

if -1

a[k*3 + l] = 1

sum = a[0]*1 + a[1]*2 + a[2]*4 + a[3]*8 + a[5]*16 + a[6]*32 + a[7]*64 + a[8]*128

image[i, j] = array[sum] * 255

if array[sum] == 1:

NEXT = 0

return image

def Xihua(binary, array, num=10):

iXihua = binary.copy()

for i in range(num):

VThin(iXihua, array)

HThin(iXihua, array)

return iXihua

array = [0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1,\

1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1,\

0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1,\

1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1,\

1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\

1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1,\

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\

0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1,\

1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1,\

0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1,\

1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,\

1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\

1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,\

1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0,\

1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0]

iThin = Xihua(img6, array)

cv2.imshow('iThin', iThin)

cv2.waitKey(0)

运行效果:

图3.7.1细化图

(8)提取最大连通图的轮廓;

代码实例:

#对图像进行边界提取

# 查找轮廓

#提取边缘

img7 = cv2.Canny(img4,80,255)

cv2.imshow('img7', img7)

cv2.waitKey(0)

运行效果:

图3.8.1轮廓提取

(9)对轮廓图像进行反色输出最终效果图。

代码实例:

#反色

img8 = img7.copy()

for i in range(0,img7.shape[0]):

for j in range(0,img7.shape[1]):

img8[i,j] = 255-img7[i,j]

cv2.imshow("img8",img8)

cv2.waitKey(0)

运行效果:

图3.9.1最终效果图

四、问题及解决方法

(1)有出现无法对规定轮廓进行输出,最后通过检索找到了cv2.drawContours()函数可进行轮廓的消除操作,最终完成将小面积轮廓进行去除的操作;

(2)对最大连通图的提取,最开始因为发现了计算轮廓面积的cv2.contourArea()函数,我获得了几个大轮廓的面积,实行了将最大轮廓输出的操作,可是发现有规定的一小块形状没有连通输出不了,然后自己实在没法了对面积进行了筛选输出最后成功获取。

五、实验总结

本次实验真的有点难到,好几次都想放弃了,可是细想之后还是没放弃,虽然不是通过老师的函数操作的,也是付出了很多心血对它进行了完成,最终的成果上,对图像细化的那一块尚存在瑕疵,不过实在是没法了,那些个数学计算方法搞得人头大。

参考:

https://blog.csdn.net/xiaoxifei/article/details/82854068

你可能感兴趣的:(python,医学)