Apriori算法描述

Apriori算法描述

Apriori算法指导我们,如果要发现强关联规则,就必须先找到频繁集。所谓频繁集,即支持度大于最小支持度的项集。如何得到数据集合D中的所有频繁集呢?

有一个非常土的办法,就是对于数据集D,遍历它的每一条记录T,得到T的所有子集,然后计算每一个子集的支持度,最后的结果再与最小支持度比较。且不论这个数据集D中有多少条记录(十万?百万?),就说每一条记录T的子集个数({1,2,3}的子集有{1},{2},{3},{1,2},{2,3},{1,3},{1,2,3},即如果记录T中含有n项,那么它的子集个数是2^n-1)。计算量非常巨大,自然是不可取的。

所以Aprior算法提出了一个逐层搜索的方法,如何逐层搜索呢?包含两个步骤:

1.自连接获取候选集。第一轮的候选集就是数据集D中的项,而其他轮次的候选集则是由前一轮次频繁集自连接得到(频繁集由候选集剪枝得到)。

2.对于候选集进行剪枝。如何剪枝呢?候选集的每一条记录T,如果它的支持度小于最小支持度,那么就会被剪掉;此外,如果一条记录T,它的子集有不是频繁集的,也会被剪掉。

算法的终止条件是,如果自连接得到的已经不再是频繁集,那么取最后一次得到的频繁集作为结果。

需要值得注意的是:

Apriori算法为了进一步缩小需要计算支持度的候选集大小,减小计算量,所以在取得候选集时就进行了它的子集是否有非频繁集的判断。(参见《数据挖掘:概念与技术》一书)。

另外,两个K项集进行连接的条件是,它们至少有K-1项相同。

你可能感兴趣的:(Apriori算法描述)