- 攻克AWS认证机器学习工程师(AWS Certified Machine Learning Engineer) - 助理级别认证:我的成功路线图
硅基创想家
AI-人工智能与大模型aws机器学习云计算AWS认证
引言当我决定考取AWS认证机器学习工程师-助理(AWSCertifiedMachineLearningEngineer—Associate)级别证书时,我就预料到这将是一段充满挑战但回报颇丰的旅程。跟你说吧,它在这两方面都没让我失望。这项考试面向的是不仅理解机器学习原理,还对AWS生态系统有扎实基础认知的专业人士。如果你还未达到AWS认证解决方案架构师-助理级别的水平,那你得先夯实这些基础。一个不
- Tritonserver 在得物的最佳实践
运维
一、Tritonserver介绍Tritonserver是Nvidia推出的基于GPU和CPU的在线推理服务解决方案,因其具有高性能的并发处理和支持几乎所有主流机器学习框架模型的特点,是目前云端的GPU服务高效部署的主流方案。Tritonserver的部署是以模型仓库(ModelRepository)的形式体现的,即需要模型文件和配置文件,且按一定的格式放置如下,根目录下每个模型有各自的文件夹。.
- Kubernetes (K8S)决定弃用 Docker!Kubernetes (K8S)学习详解
熙媛
学习笔记javadockerjenkinslinux服务器
确实如此。Kubernetes现已弃用Docker!!!目前,Kubernetes中的Docker支持功能现已弃用,并将在之后的版本中被删除。Kubernetes之前使用的是一个名为dockershim的模块,用以实现对Docker的CRI支持。但Kubernetes社区发现了与之相关的维护问题,因此建议大家考虑使用包含CRI完整实现(兼容v1alpha1或v1)的可用容器运行时。简而言之,Doc
- python同花顺股票实时数据_如何获取实时的股票数据?
weixin_39575648
python同花顺股票实时数据
Ref===>tushare系统:Ubuntu15.04Python:2.7环境包:Anaconda,仅供娱乐...最近在学习Python语言,刚好也想学学炒股,因此学习了一些基础知识后,打算做一些股票相关的demo练手,第一个要解决的问题当然是数据采集。翻遍了网络,看了一些朋友的代码片段(尤其感谢tushare的作者),知道了向API请求数据的格式大概是这样的:http://api.financ
- 微软 LayoutLMv3:通过统一文本和图像掩码进行文档人工智能预训练
人工智能
LayoutLMv3:通过统一文本和图像掩码进行文档人工智能预训练LayoutLMv3应用统一的文本-图像多模态Transformer来学习跨模态表示。Transformer具有多层架构,每层主要由多头自注意力机制和逐位置全连接前馈网络组成。Transformer的输入是文本嵌入$Y=y_{1:L}$和图像嵌入$X=x_{1:M}$序列的连接,其中$L$和$M$分别是文本和图像的序列长度。通过Tr
- AI前端开发学习资源与途径:开启你的智能化前端之旅
前端
随着人工智能技术的飞速发展,AI写代码工具已经不再是遥不可及的梦想,它正深刻地改变着前端开发的模式。AI赋能前端开发,不仅提高了开发效率,也降低了学习门槛,为更多开发者打开了通往智能化前端世界的大门。然而,学习AI前端开发也面临着诸多挑战,需要系统学习和持续实践。本文将为你详细介绍AI前端开发的学习途径、资源以及实践经验,助你开启这段精彩的旅程。AI前端开发的兴起及重要性近年来,人工智能技术在各个
- AI时代的前端开发:拥抱变化,迎接挑战
前端
近年来,人工智能(AI)技术的飞速发展深刻地改变着各个行业,前端开发领域也不例外。面对AI带来的冲击和挑战,开发者们需要积极拥抱变化,学习新技能,才能在竞争激烈的市场中立于不败之地。本文将探讨AI时代前端开发面临的新挑战,以及如何利用AI赋能前端开发,提高效率,应对技术更新迭代。关键词:AI写代码工具AI时代前端开发的新挑战AI技术的快速发展,为前端开发带来了前所未有的机遇,同时也带来了新的挑战。
- DeepSeek 实现原理探析
rockmelodies
人工智能aideepseek深度学习
DeepSeek实现原理探析引言DeepSeek是一种基于深度学习的智能搜索技术,它通过结合自然语言处理(NLP)、信息检索(IR)和机器学习(ML)等多领域的技术,旨在提供更加精准、智能的搜索结果。本文将深入探讨DeepSeek的实现原理,分析其核心技术及其在实际应用中的表现。一、DeepSeek的核心技术自然语言处理(NLP)词嵌入(WordEmbedding):DeepSeek使用如Word
- Android studio 打包 uni App
前端小小小学生
uni-app前端androiduni-appandroidstudio
Androidstudio打包uniAppHBuilderX本身有原生App云打包功能,本身没什么需求可以直接使用,如果需要多次打包,云打包每次链接只能提供5次下载机会,而且要时间排队打包,所以学习了一下Androidstudio工具打包,下面是使用方法,仅供参考:1.安装Androidstudio下载Androidstudio下载地址:http://www.android-studio.org/
- Django学习笔记(第一天:Django基本知识简介与启动)
S1901
pythonDjangodjango学习笔记
博主毕业已经工作一年多了,最基本的测试工作已经完全掌握。一方面为了解决当前公司没有自动化测试平台的痛点,另一方面为了向更高级的测试架构师转型,于是重温Django的知识,用于后期搭建测试自动化平台。为什么不选择Java:Python语法简洁易读,适合快速开发。Selenium、Appium、pytest、Requests等工具对Python支持极好,且有丰富的文档和社区资源。Django简介Dja
- 位图的深入解析:从数据结构到图像处理与C++实现
Exhausted、
机器学习计算机视觉人工智能图像处理c++算法数据结构开发语言
在学习优选算法课程的时候,博主学习位运算了解到位运算的这个概念,之前没有接触过,就查找了相关的资料,丰富一下自身,当作课外知识来了解一下。位图(Bitmap)是一种用于表示图像的数据结构,它将图像分解为像素的二维网格,每个像素的颜色值存储在一个矩阵中。位图广泛应用于计算机图形学、图像处理和计算机视觉等领域。目录1.位图的基本概念1.1像素1.2分辨率1.3颜色深度2.位图的存储格式2.1BMP格式
- ORB-SLAM2源码学习:Tracking.cc:GrabImageStereo、GrabImageRGBD、GrabImageMonocular处理图像
PaLu-LvL
计算机视觉#ORB-SLAM2#局部建图线程计算机视觉人工智能c++ubuntu学习
前言该部分函数在Tracking.cc源文件中定义,用于处理图像。1.函数作用:1.GrabImageStereo函数的主要作用是处理输入的双目图像(左视图和右视图),进行必要的预处理(颜色转换),创建表示当前帧的对象,并执行跟踪操作,最后返回当前帧在世界坐标系下的变换矩阵。cv::MatTracking::GrabImageStereo(constcv::Mat&imRectLeft,const
- 深度学习视频教程推荐
yunTrans
DeepLearning深度学习视频神经网络
推荐一个深度学习视频教程,中文,推导详细。老先生娓娓道来,将神经网络、深度学习讲的非常透彻。由复旦大学吴立德老师教授的课程:http://www.youku.com/playlist_show/id_21508721.html
- 基于深度学习的商品推荐
SEU-WYL
深度学习dnn深度学习人工智能dnn
基于深度学习的商品推荐系统利用深度学习技术对用户的行为和商品的特征进行分析和建模,从而向用户推荐最相关的商品。这类系统在电子商务、社交媒体和内容推荐等领域中具有广泛应用。以下是对这一领域的系统介绍:1.任务和目标商品推荐系统的主要任务和目标包括:个性化推荐:根据用户的兴趣和行为,向用户推荐个性化的商品列表。提高用户体验:通过精准推荐,提高用户的购物体验和满意度。增加销售额:通过推荐相关商品,增加用
- Python库房管理系统开发指南
Tech Synapse
python开发语言
在现代仓储管理中,高效、准确的信息系统是提高运营效率的关键。Python作为一种强大且易于学习的编程语言,非常适合用来开发简易而功能齐全的库房管理系统。本文将详细介绍如何使用Python编写一个基本的库房管理系统,包括商品入库、出库、查询库存及生成报表等功能。通过本文,读者不仅能学习到Python编程技巧,还能理解库房管理系统的基本架构和逻辑。一、系统需求分析在开发库房管理系统之前,我们需要明确系
- 黑马苍穹外卖学习笔记
窦莎言Firm
黑马苍穹外卖学习笔记【下载地址】黑马苍穹外卖学习笔记本仓库提供了一份关于“黑马苍穹外卖”的学习笔记,由笔者在课余时间学习整理而成。笔记内容涵盖了部分源码解析、学习心得以及个人体会,旨在帮助有兴趣的读者更好地理解和掌握相关知识项目地址:https://gitcode.com/Open-source-documentation-tutorial/b7c5a资源描述本仓库提供了一份关于“黑马苍穹外卖”的
- 常见的深度学习模型总结
编码时空的诗意行者
深度学习人工智能
1.深度前馈神经网络(DeepFeedforwardNetworks)发明时间:2006年左右,随着计算能力的提升和大数据集的可用性增加,深度学习开始兴起。发明动机:解决传统机器学习模型在复杂数据上的局限性,如线性模型无法处理非线性关系的数据。模型特点:由多个隐藏层组成的神经网络,每一层的节点与下一层的节点完全连接。应用场景:分类、回归、语音识别、图像识别等。2.卷积神经网络(Convolutio
- 手把手教你Linux内核编译:从零开始编写
深度Linux
C/C++全栈开发操作系统linux内存管理内核编译
在计算机技术的广袤星空中,Linux内核宛如一颗最为璀璨而神秘的巨星,散发着无尽的魅力与诱惑。它是操作系统的心脏,掌控着计算机系统的一切核心资源与底层运作。如今,我们即将踏上一场激动人心的冒险之旅——一步步解锁Linux内核,开启从零开始的编程征程。一、简介Linux内核作为操作系统的核心,其魅力在于多方面。首先,它负责资源管理和设备驱动等重要任务。学习Linux内核编程,能够让开发者深入了解操作
- qt中文乱码
@hdd
Qt
刚开始学习qt,经常会遇到中文输出乱码,在网上找了解决办法有下面这个两个办法QTextCodec::setCodecForCStrings(QTextCodec::codecForName("GB2312"));或QTextCodec::setCodecForCStrings(QTextCodec::codecForName("UTF-8"));我试过发现不行,然后翻阅书,发现这行代码可以在主函数
- 深度学习 视频推荐
小赖同学啊
人工智能深度学习音视频人工智能
以下为你呈现一个基于深度学习实现视频推荐的简化代码示例。这里我们使用的是协同过滤思想结合神经网络的方式,借助TensorFlow和Keras库来构建模型。在这个示例中,假设已有用户对视频的评分数据,目标是预测用户对未评分视频的评分,进而为用户推荐可能感兴趣的视频。1.环境准备要确保你已经安装了必要的库,如numpy、pandas、tensorflow等,可以使用以下命令进行安装:pipinstal
- 解锁全方位健康生活指南,拥抱元气日常
yy0821yy
生活
在追求美好生活的道路上,健康是我们最坚实的后盾。想要拥有活力满满的人生,就得从生活的各个角落入手,解锁全方位的健康密码。饮食是健康的基石。日常饮食中,要确保食物种类丰富多样,像富含蛋白质的鸡蛋、牛奶,为身体修复和生长提供原料;新鲜的果蔬,比如橙子、西兰花,满满都是维生素和矿物质,帮我们提升免疫力。同时,我们要学会给饮食做减法,拒绝高油、高盐、高糖的食物,比如油炸食品、腌制咸菜、奶茶等,这些食物不仅
- Tenserflow学习笔记 【一:Python入门】
邪魔小屁屁
神经网络与深度学习python数据结构机器学习
Python序列数据结构初习一.前言Python的两种主要的序列数据类型二.关于序列的相关操作1.索引2.切片[开始位置:结束位置]3.获取长度len()4.添加元素①append()②insert(a,b)5.合并列表①extend()②‘+’6.删除元素del6.排序7.遍历序列8.字典①遍历②添加、修改指定元素的取值③合并字典update()④删除字典中的元素9.集合(略)总结一.前言Pyt
- 23、深度学习-自学之路-激活函数relu、tanh、sigmoid、softmax函数的正向传播和反向梯度。
小宇爱
深度学习-自学之路深度学习人工智能
在使用这个非线性激活函数的时候,其实我们重点还是学习的是他们的正向怎么传播,以及反向怎么传递的。如下图所示:第一:relu函数的正向传播函数是:当输入值(隐藏层)值大于了,就输出自己本身的值。反向梯度传播:当输出值大于0,那么反向梯度值就等于输出值乘以1如果小于0,那反向梯度值就等于0.通俗的来说就是,如果输入值是0或小于0,那么输出值的反向增强就没有。如果输入值大于0,那么输出值的方向增强就有。
- eclipse2017支持的Servlet的版本_jsp进阶(servlet篇)
weixin_39814369
Servlet篇(jsp重点)@author:杜勇帅@email:820482874@qq.com-一.Servlet基础一.Servlet概述Servlet是运行在服务器端的java程序(类),作用是接收并处理客户端的请求,生成响应给客户端。学习了Servlet后,jsp页面只负责展示数据,Servlet负责处理请求(调用Dao实现具体功能),并将数据转发到jsp页面上去展示(生成响应给客户端)
- 【学习笔记】vue-cli中组件间传参的方式
龚箭
vue.js学习笔记
一、父子组件传参首先创建子组件,子组件的名字为component1.vue接受父组件:{{name}}打印父组件的信息exportdefault{//子组件通过props组件接收,name需要和父组件的key一致props:['name'],data(){return{}},mounted(){},methods:{Forward(){console.log(this.name);},},}然后在
- 林语堂 | 生活的智慧在于逐渐澄清滤除那些不重要的杂质,而保留最重要的部分
斐夷所非
cognitivescience整理自己
注:本文为“断舍离,整理自己”相关文章合辑。最高级的断舍离,是整理自己原创高晓岚帆书樊登讲书2023年01月04日18:40上海作者|樊登读书・高晓岚曾看过这样一句话:大道至简,成就一个人的关键,不在于他得到过什么,而在于他放下过什么。人这一辈子,其实就是个不断拿起,又不断放下的过程。唯有懂得断舍离,知道什么是最重要的,才能让心解脱,轻装上阵。试着学会整理自己,把时间和精力花费在真正有价值的事情上
- 自动驾驶技术的未来趋势与挑战分析
智能计算研究中心
其他
内容概要自动驾驶技术自诞生以来经历了多个发展阶段。最初的研究集中在感知和控制系统的基础构建,随后进入了数据处理和算法的优化阶段,如今,随着人工智能和机器学习技术的快速应用,自动驾驶行业正处于一个前所未有的迅猛发展期。当前,行业内涌现出多种解决方案,各大汽车制造商与科技公司纷纷加大投入,推动这一领域的技术进步。市场需求不断增加,为自动驾驶技术注入活力。城市交通拥堵、环境污染等问题促使人们寻求更加智能
- DataWhale 数学建模导论学习笔记(第一章)
ryanYu_127
学习笔记
要点:利用Python作为计算工具帮助解决数学模型。一、前期准备工作1.AnacondaNavigator帮助安装了NumPy所需的功能包。2.通过Jupyter_Lab,可以直接测试代码运行的结果。3.通过vscode可以修改文本并即时看到预览结果,解决一些符号、公式、表格显示不正常的问题。4.这也是我第一次使用CSDN记录自己的学习笔记。二、进入第一章正题解析方法与几何建模:1.前面的向量和矩
- 基于联邦学习的政务大数据平台应用研究
宋罗世家技术屋
计算机软件及理论发展专栏政务大数据
摘要当前数字政府建设已进入深水区,政务大数据平台作为数据底座支撑各类政务信息化应用,其隐私数据的安全性和合规性一直被业界广泛关注。联邦学习是一类解决数据孤岛的重要方法,基于联邦学习的政务一体化大数据平台应用具有较高的研究价值。首先,介绍政务大数据平台及联邦学习应用现状;然后,分析政务大数据平台面临的隐私数据的采集、分类分级、共享三大管理挑战;接着,阐述基于联邦学习的推荐算法和隐私集合求交技术的解决
- Springboot(五十)SpringBoot3集成sentinel并连接sentinel-dashboard
camellias_
springbootsentinel后端
对,你没看错,又是sentinel。我真是够了,而且,我觉得这应该不是最后一次,以后应该还会写到关于sentinel的学习记录。前边我们了解了sentinel如何使用。相对来讲还是比较简单的。之后学到自定义注解的时候,还自定义了一个sentinel注解来实现限流。用着相对来讲还是很方便的。但是呢,有一个小小的问题。官方推荐使用sentinel-dashboard,这玩意我一直没用明白。我得项目一直
- 二分查找排序算法
周凡杨
java二分查找排序算法折半
一:概念 二分查找又称
折半查找(
折半搜索/
二分搜索),优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而 查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表 分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步
- java中的BigDecimal
bijian1013
javaBigDecimal
在项目开发过程中出现精度丢失问题,查资料用BigDecimal解决,并发现如下这篇BigDecimal的解决问题的思路和方法很值得学习,特转载。
原文地址:http://blog.csdn.net/ugg/article/de
- Shell echo命令详解
daizj
echoshell
Shell echo命令
Shell 的 echo 指令与 PHP 的 echo 指令类似,都是用于字符串的输出。命令格式:
echo string
您可以使用echo实现更复杂的输出格式控制。 1.显示普通字符串:
echo "It is a test"
这里的双引号完全可以省略,以下命令与上面实例效果一致:
echo Itis a test 2.显示转义
- Oracle DBA 简单操作
周凡杨
oracle dba sql
--执行次数多的SQL
select sql_text,executions from (
select sql_text,executions from v$sqlarea order by executions desc
) where rownum<81;
&nb
- 画图重绘
朱辉辉33
游戏
我第一次接触重绘是编写五子棋小游戏的时候,因为游戏里的棋盘是用线绘制的,而这些东西并不在系统自带的重绘里,所以在移动窗体时,棋盘并不会重绘出来。所以我们要重写系统的重绘方法。
在重写系统重绘方法时,我们要注意一定要调用父类的重绘方法,即加上super.paint(g),因为如果不调用父类的重绘方式,重写后会把父类的重绘覆盖掉,而父类的重绘方法是绘制画布,这样就导致我们
- 线程之初体验
西蜀石兰
线程
一直觉得多线程是学Java的一个分水岭,懂多线程才算入门。
之前看《编程思想》的多线程章节,看的云里雾里,知道线程类有哪几个方法,却依旧不知道线程到底是什么?书上都写线程是进程的模块,共享线程的资源,可是这跟多线程编程有毛线的关系,呜呜。。。
线程其实也是用户自定义的任务,不要过多的强调线程的属性,而忽略了线程最基本的属性。
你可以在线程类的run()方法中定义自己的任务,就跟正常的Ja
- linux集群互相免登陆配置
林鹤霄
linux
配置ssh免登陆
1、生成秘钥和公钥 ssh-keygen -t rsa
2、提示让你输入,什么都不输,三次回车之后会在~下面的.ssh文件夹中多出两个文件id_rsa 和 id_rsa.pub
其中id_rsa为秘钥,id_rsa.pub为公钥,使用公钥加密的数据只有私钥才能对这些数据解密 c
- mysql : Lock wait timeout exceeded; try restarting transaction
aigo
mysql
原文:http://www.cnblogs.com/freeliver54/archive/2010/09/30/1839042.html
原因是你使用的InnoDB 表类型的时候,
默认参数:innodb_lock_wait_timeout设置锁等待的时间是50s,
因为有的锁等待超过了这个时间,所以抱错.
你可以把这个时间加长,或者优化存储
- Socket编程 基本的聊天实现。
alleni123
socket
public class Server
{
//用来存储所有连接上来的客户
private List<ServerThread> clients;
public static void main(String[] args)
{
Server s = new Server();
s.startServer(9988);
}
publi
- 多线程监听器事件模式(一个简单的例子)
百合不是茶
线程监听模式
多线程的事件监听器模式
监听器时间模式经常与多线程使用,在多线程中如何知道我的线程正在执行那什么内容,可以通过时间监听器模式得到
创建多线程的事件监听器模式 思路:
1, 创建线程并启动,在创建线程的位置设置一个标记
2,创建队
- spring InitializingBean接口
bijian1013
javaspring
spring的事务的TransactionTemplate,其源码如下:
public class TransactionTemplate extends DefaultTransactionDefinition implements TransactionOperations, InitializingBean{
...
}
TransactionTemplate继承了DefaultT
- Oracle中询表的权限被授予给了哪些用户
bijian1013
oracle数据库权限
Oracle查询表将权限赋给了哪些用户的SQL,以备查用。
select t.table_name as "表名",
t.grantee as "被授权的属组",
t.owner as "对象所在的属组"
- 【Struts2五】Struts2 参数传值
bit1129
struts2
Struts2中参数传值的3种情况
1.请求参数绑定到Action的实例字段上
2.Action将值传递到转发的视图上
3.Action将值传递到重定向的视图上
一、请求参数绑定到Action的实例字段上以及Action将值传递到转发的视图上
Struts可以自动将请求URL中的请求参数或者表单提交的参数绑定到Action定义的实例字段上,绑定的规则使用ognl表达式语言
- 【Kafka十四】关于auto.offset.reset[Q/A]
bit1129
kafka
I got serveral questions about auto.offset.reset. This configuration parameter governs how consumer read the message from Kafka when there is no initial offset in ZooKeeper or
- nginx gzip压缩配置
ronin47
nginx gzip 压缩范例
nginx gzip压缩配置 更多
0
nginx
gzip
配置
随着nginx的发展,越来越多的网站使用nginx,因此nginx的优化变得越来越重要,今天我们来看看nginx的gzip压缩到底是怎么压缩的呢?
gzip(GNU-ZIP)是一种压缩技术。经过gzip压缩后页面大小可以变为原来的30%甚至更小,这样,用
- java-13.输入一个单向链表,输出该链表中倒数第 k 个节点
bylijinnan
java
two cursors.
Make the first cursor go K steps first.
/*
* 第 13 题:题目:输入一个单向链表,输出该链表中倒数第 k 个节点
*/
public void displayKthItemsBackWard(ListNode head,int k){
ListNode p1=head,p2=head;
- Spring源码学习-JdbcTemplate queryForObject
bylijinnan
javaspring
JdbcTemplate中有两个可能会混淆的queryForObject方法:
1.
Object queryForObject(String sql, Object[] args, Class requiredType)
2.
Object queryForObject(String sql, Object[] args, RowMapper rowMapper)
第1个方法是只查
- [冰川时代]在冰川时代,我们需要什么样的技术?
comsci
技术
看美国那边的气候情况....我有个感觉...是不是要进入小冰期了?
那么在小冰期里面...我们的户外活动肯定会出现很多问题...在室内呆着的情况会非常多...怎么在室内呆着而不发闷...怎么用最低的电力保证室内的温度.....这都需要技术手段...
&nb
- js 获取浏览器型号
cuityang
js浏览器
根据浏览器获取iphone和apk的下载地址
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" content="text/html"/>
<meta name=
- C# socks5详解 转
dalan_123
socketC#
http://www.cnblogs.com/zhujiechang/archive/2008/10/21/1316308.html 这里主要讲的是用.NET实现基于Socket5下面的代理协议进行客户端的通讯,Socket4的实现是类似的,注意的事,这里不是讲用C#实现一个代理服务器,因为实现一个代理服务器需要实现很多协议,头大,而且现在市面上有很多现成的代理服务器用,性能又好,
- 运维 Centos问题汇总
dcj3sjt126com
云主机
一、sh 脚本不执行的原因
sh脚本不执行的原因 只有2个
1.权限不够
2.sh脚本里路径没写完整。
二、解决You have new mail in /var/spool/mail/root
修改/usr/share/logwatch/default.conf/logwatch.conf配置文件
MailTo =
MailFrom
三、查询连接数
- Yii防注入攻击笔记
dcj3sjt126com
sqlWEB安全yii
网站表单有注入漏洞须对所有用户输入的内容进行个过滤和检查,可以使用正则表达式或者直接输入字符判断,大部分是只允许输入字母和数字的,其它字符度不允许;对于内容复杂表单的内容,应该对html和script的符号进行转义替换:尤其是<,>,',"",&这几个符号 这里有个转义对照表:
http://blog.csdn.net/xinzhu1990/articl
- MongoDB简介[一]
eksliang
mongodbMongoDB简介
MongoDB简介
转载请出自出处:http://eksliang.iteye.com/blog/2173288 1.1易于使用
MongoDB是一个面向文档的数据库,而不是关系型数据库。与关系型数据库相比,面向文档的数据库不再有行的概念,取而代之的是更为灵活的“文档”模型。
另外,不
- zookeeper windows 入门安装和测试
greemranqq
zookeeper安装分布式
一、序言
以下是我对zookeeper 的一些理解: zookeeper 作为一个服务注册信息存储的管理工具,好吧,这样说得很抽象,我们举个“栗子”。
栗子1号:
假设我是一家KTV的老板,我同时拥有5家KTV,我肯定得时刻监视
- Spring之使用事务缘由(2-注解实现)
ihuning
spring
Spring事务注解实现
1. 依赖包:
1.1 spring包:
spring-beans-4.0.0.RELEASE.jar
spring-context-4.0.0.
- iOS App Launch Option
啸笑天
option
iOS 程序启动时总会调用application:didFinishLaunchingWithOptions:,其中第二个参数launchOptions为NSDictionary类型的对象,里面存储有此程序启动的原因。
launchOptions中的可能键值见UIApplication Class Reference的Launch Options Keys节 。
1、若用户直接
- jdk与jre的区别(_)
macroli
javajvmjdk
简单的说JDK是面向开发人员使用的SDK,它提供了Java的开发环境和运行环境。SDK是Software Development Kit 一般指软件开发包,可以包括函数库、编译程序等。
JDK就是Java Development Kit JRE是Java Runtime Enviroment是指Java的运行环境,是面向Java程序的使用者,而不是开发者。 如果安装了JDK,会发同你
- Updates were rejected because the tip of your current branch is behind
qiaolevip
学习永无止境每天进步一点点众观千象git
$ git push joe prod-2295-1
To git@git.dianrong.com:joe.le/dr-frontend.git
! [rejected] prod-2295-1 -> prod-2295-1 (non-fast-forward)
error: failed to push some refs to 'git@git.dianron
- [一起学Hive]之十四-Hive的元数据表结构详解
superlxw1234
hivehive元数据结构
关键字:Hive元数据、Hive元数据表结构
之前在 “[一起学Hive]之一–Hive概述,Hive是什么”中介绍过,Hive自己维护了一套元数据,用户通过HQL查询时候,Hive首先需要结合元数据,将HQL翻译成MapReduce去执行。
本文介绍一下Hive元数据中重要的一些表结构及用途,以Hive0.13为例。
文章最后面,会以一个示例来全面了解一下,
- Spring 3.2.14,4.1.7,4.2.RC2发布
wiselyman
Spring 3
Spring 3.2.14、4.1.7及4.2.RC2于6月30日发布。
其中Spring 3.2.1是一个维护版本(维护周期到2016-12-31截止),后续会继续根据需求和bug发布维护版本。此时,Spring官方强烈建议升级Spring框架至4.1.7 或者将要发布的4.2 。
其中Spring 4.1.7主要包含这些更新内容。