高斯模糊

卡尔·弗里德里奇·高斯(1777—1855),18世纪 德国数学家,物理和天文学造诣也很深。对超几何级数、复变函数论、统计数学、 椭圆函数论都有重大贡献。此外,还有关于 向量分析的高斯定理,正态分布的正规 曲线等研究成果。与 牛顿、阿基米德并称为史上最杰出数学家。
  高斯模糊(Gaussian Blur)是美国Adobe图像 软件公司开发的一个做图软件:Adobe Photoshop(系列)中的一个 滤镜,具体的位置在:滤镜—模糊——高斯模糊!高斯模糊的原理中,它是根据 高斯曲线调节象素色值,它是有选择地模糊图像。说得直白一点,就是高斯模糊能够把某一高斯曲线周围的像素色值统计起来,采用数学上 加权平均的计算方法得到这条曲线的色值,最后能够留下人物的轮廓,即曲线.是指当 Adobe Photoshop 将加权平均应用于像素时生成的钟形曲线。

  在PS中间,你应该知道所有的颜色不过都是数字,各种模糊不过都是算法。把要模糊的像素色值统计,用数学上加权平均的计算方法(高斯函数)得到色值,对范围、半径等进行模糊,大致就是高斯模糊。

 

 

高斯模糊是一种图像模糊滤波器,它用正态分布计算图像中每个像素的变换。N 维空间正态分布方程为

在二维空间定义为

其中 r 是模糊半径 (r2 = u2 + v2),σ 是正态分布的标准偏差。在二维空间中,这个公式生成的曲面的等高线是从中心开始呈正态分布的同心圆。分布不为零的像素组成的卷积矩阵与原始图像做变换。每个像素的值都是周围相邻像素值的加权平均。原始像素的值有最大的高斯分布值,所以有最大的权重,相邻像素随着距离原始像素越来越远,其权重也越来越小。这样进行模糊处理比其它的均衡模糊滤波器更高地保留了边缘效果,参见尺度空间实现

理论上来讲,图像中每点的分布都不为零,这也就是说每个像素的计算都需要包含整幅图像。在实际应用中,在计算高斯函数的离散近似时,在大概3σ距离之外的像素都可以看作不起作用,这些像素的计算也就可以忽略。通常,图像处理程序只需要计算 的矩阵就可以保证相关像素影响。

除了圆形对称之外,高斯模糊也可以在二维图像上对两个独立的一维空间分别进行计算,这叫作线性可分。这也就是说,使用二维矩阵变换得到的效果也可以通过在水平方向进行一维高斯矩阵变换加上竖直方向的一维高斯矩阵变换得到。从计算的角度来看,这是一项有用的特性,因为这样只需要 次计算,而不可分的矩阵则需要 次计算,其中 M,N 是需要进行滤波的图像的维数,mn 是滤波器的维数。

对一幅图像进行多次连续高斯模糊的效果与一次更大的高斯模糊可以产生同样的效果,大的高斯模糊的半径是所用多个高斯模糊半径平方和的平方根。例如,使用半径分别为 6 和 8 的两次高斯模糊变换得到的效果等同于一次半径为 10 的高斯模糊效果,。根据这个关系,使用多个连续较小的高斯模糊处理不会比单个高斯较大处理时间要少。

在减小图像尺寸的场合经常使用高斯模糊。在进行欠采样的时候,通常在采样之前对图像进行低通滤波处理。这样就可以保证在采样图像中不会出现虚假的高频信息。高斯模糊有很好的特性,如没有明显的边界,这样就不会在滤波图像中形成震荡。

[编辑] 高斯矩阵示例

这是一个计算 σ = 0.84089642 的高斯分布生成的示例矩阵。注意中心元素 (4,4) 处有最大值,随着距离中心越远数值对称地减小。

0.00000067 0.00002292 0.00019117 0.00038771 0.00019117 0.00002292 0.00000067
0.00002292 0.00078633 0.00655965 0.01330373 0.00655965 0.00078633 0.00002292
0.00019117 0.00655965 0.05472157 0.11098164 0.05472157 0.00655965 0.00019117
0.00038771 0.01330373 0.11098164 0.22508352 0.11098164 0.01330373 0.00038771
0.00019117 0.00655965 0.05472157 0.11098164 0.05472157 0.00655965 0.00019117
0.00002292 0.00078633 0.00655965 0.01330373 0.00655965 0.00078633 0.00002292
0.00000067 0.00002292 0.00019117 0.00038771 0.00019117 0.00002292 0.00000067

注意中心处的 0.22508352 比 3σ 外的 0.00019117 大 1177 倍。

 

你可能感兴趣的:(高斯模糊)