【个人】项目实训 | 基于神经网络的风格迁移

文章目录

  • 前言
  • 正文
  • 一. 实现过程
    • 1. 神经网络处理核心代码
    • 2. 神经网络训练应用
    • 3. 风格迁移UI
  • 二. 实现效果示例
    • 1. 手绘风格迁移
    • 2. 梵高抽象画风迁移
  • 总结
    • 一. 主要工作
    • 二. 有待改进
    • 三. 参考链接


前言

关于项目实训,本人主要负责AI部分的图像风格迁移功能。
通过Python语言实现了基于神经网络的风格迁移。
具体内容如下。


正文

一. 实现过程

1. 神经网络处理核心代码


def model_nn(instance,sess, input_image, model,train_step,J,J_content, J_style,save_path,num_iterations=200):
    # Initialize global variables (you need to run the session on the initializer)
    ### START CODE HERE ### (1 line)
    sess.run(tf.global_variables_initializer())
    ### END CODE HERE ###

    # Run the noisy input image (initial generated image) through the model. Use assign().
    ### START CODE HERE ### (1 line)
    sess.run(model['input'].assign(input_image))
    ### END CODE HERE ###

    for i in range(num_iterations):

        # Run the session on the train_step to minimize the total cost
        ### START CODE HERE ### (1 line)
        sess.run(train_step)
        ### END CODE HERE ###

        # Compute the generated image by running the session on the current model['input']
        ### START CODE HERE ### (1 line)
        generated_image = sess.run(model['input'])
        ### END CODE HERE ###

   
    # save last generated image
    save_image(save_path+'output/generated_image.jpg', generated_image)
    #print("I have saved!!!!!")

    temp_image = cv.imread(save_path+"output/generated_image.jpg")
    instance.image_result_image = cv.cvtColor(temp_image,cv.COLOR_BGR2RGB)
    m_init_style_transfer.update_image(instance)

    return generated_image


def neual_style_transfer(instance):
    starttime = datetime.datetime.now()

    ###############################################
    # Reset the graph
    tf.reset_default_graph()

    # Start interactive session
    sess = tf.InteractiveSession()
    #print("instance.open_file_path")
    #print(instance.open_file_path[0][0])
    #content_image = scipy.misc.imread(instance.root_path+"/part3/images/louvre_small.jpg")
    content_image = instance.m_image
    content_image = cv.resize(content_image, (400, 300))
    content_image = reshape_and_normalize_image(content_image)

    #style_image = scipy.misc.imread(instance.root_path+"/part3/images/starrynight.jpg")
    style_image = scipy.misc.imread(instance.style_file_transfer[0])
    style_image = cv.resize(style_image, (400, 300))
    style_image = reshape_and_normalize_image(style_image)

    generated_image = generate_noise_image(content_image)
    #plt.imshow(generated_image[0])
    #plt.show()

    model = load_vgg_model(instance.root_path+"/part3/pretrained-model/imagenet-vgg-verydeep-19.mat")

    STYLE_LAYERS = [  # style_layers 的作用
        ('conv1_1', 0.2),
        ('conv2_1', 0.2),
        ('conv3_1', 0.2),
        ('conv4_1', 0.2),
        ('conv5_1', 0.2)]

    # Assign the content image to be the input of the VGG model.
    sess.run(model['input'].assign(content_image))

    # Select the output tensor of layer conv4_2
    out = model['conv4_2']

    # Set a_C to be the hidden layer activation from the layer we have selected
    a_C = sess.run(out)

    # Set a_G to be the hidden layer activation from same layer. Here, a_G references model['conv4_2']
    # and isn't evaluated yet. Later in the code, we'll assign the image G as the model input, so that
    # when we run the session, this will be the activations drawn from the appropriate layer, with G as input.
    a_G = out

    # Compute the content cost
    J_content = compute_content_cost(a_C, a_G)

    # Assign the input of the model to be the "style" image
    sess.run(model['input'].assign(style_image))

    # Compute the style cost
    J_style = compute_style_cost(model, STYLE_LAYERS,sess)

    ### START CODE HERE ### (1 line)
    J = total_cost(J_content=J_content, J_style=J_style)
    ### END CODE HERE ###

    # define optimizer (1 line)
    optimizer = tf.train.AdamOptimizer(2.0)

    # define train_step (1 line)
    train_step = optimizer.minimize(J)

    #model_nn(sess, generated_image)
    save_path=instance.root_path+"/part3/"
    model_nn(instance,sess, generated_image, model, train_step, J, J_content, J_style,save_path, num_iterations=100)
    #################################################
    endtime = datetime.datetime.now()
    print("the running time :" + str((endtime - starttime).seconds))
    print("END!")

其中关于 content_image 与 style_image 分别表示,当前需要处理的图片与参考转换风格图片。

content_image = instance.m_image
content_image = cv.resize(content_image, (400, 300))
content_image = reshape_and_normalize_image(content_image)

style_image = scipy.misc.imread(instance.style_file_transfer[0])
style_image = cv.resize(style_image, (400, 300))
style_image = reshape_and_normalize_image(style_image)

content_image即当前软件打开的图片,受训练模型的尺寸限制,将其转换为400×300像素。
style_image将读取用户刚刚选择的风格图片,同样进行图片尺寸变换便于训练。


2. 神经网络训练应用

class CONFIG:
    IMAGE_WIDTH = 400
    IMAGE_HEIGHT = 300
    COLOR_CHANNELS = 3
    NOISE_RATIO = 0.6
    MEANS = np.array([123.68, 116.779, 103.939]).reshape((1, 1, 1, 3))
    VGG_MODEL = 'pretrained-model/imagenet-vgg-verydeep-19.mat'  # Pick the VGG 19-layer model by from the paper "Very Deep Convolutional Networks for Large-Scale Image Recognition".
    STYLE_IMAGE = 'images/stone_style.jpg'  # Style image to use.
    CONTENT_IMAGE = 'images/content300.jpg'  # Content image to use.
    OUTPUT_DIR = 'output/'


def load_vgg_model(path):

    vgg = scipy.io.loadmat(path)

    vgg_layers = vgg['layers']

    def _weights(layer, expected_layer_name):
        """
        Return the weights and bias from the VGG model for a given layer.
        """
        wb = vgg_layers[0][layer][0][0][2]
        W = wb[0][0]
        b = wb[0][1]
        layer_name = vgg_layers[0][layer][0][0][0][0]
        assert layer_name == expected_layer_name
        return W, b

        return W, b

    def _relu(conv2d_layer):
        """
        Return the RELU function wrapped over a TensorFlow layer. Expects a
        Conv2d layer input.
        """
        return tf.nn.relu(conv2d_layer)

    def _conv2d(prev_layer, layer, layer_name):
        """
        Return the Conv2D layer using the weights, biases from the VGG
        model at 'layer'.
        """
        W, b = _weights(layer, layer_name)
        W = tf.constant(W)
        b = tf.constant(np.reshape(b, (b.size)))
        return tf.nn.conv2d(prev_layer, filter=W, strides=[1, 1, 1, 1], padding='SAME') + b

    def _conv2d_relu(prev_layer, layer, layer_name):
        """
        Return the Conv2D + RELU layer using the weights, biases from the VGG
        model at 'layer'.
        """
        return _relu(_conv2d(prev_layer, layer, layer_name))

    def _avgpool(prev_layer):
        """
        Return the AveragePooling layer.
        """
        return tf.nn.avg_pool(prev_layer, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

    # Constructs the graph model.
    graph = {
     }
    graph['input'] = tf.Variable(np.zeros((1, CONFIG.IMAGE_HEIGHT, CONFIG.IMAGE_WIDTH, CONFIG.COLOR_CHANNELS)),
                                 dtype='float32')
    graph['conv1_1'] = _conv2d_relu(graph['input'], 0, 'conv1_1')
    graph['conv1_2'] = _conv2d_relu(graph['conv1_1'], 2, 'conv1_2')
    graph['avgpool1'] = _avgpool(graph['conv1_2'])
    graph['conv2_1'] = _conv2d_relu(graph['avgpool1'], 5, 'conv2_1')
    graph['conv2_2'] = _conv2d_relu(graph['conv2_1'], 7, 'conv2_2')
    graph['avgpool2'] = _avgpool(graph['conv2_2'])
    graph['conv3_1'] = _conv2d_relu(graph['avgpool2'], 10, 'conv3_1')
    graph['conv3_2'] = _conv2d_relu(graph['conv3_1'], 12, 'conv3_2')
    graph['conv3_3'] = _conv2d_relu(graph['conv3_2'], 14, 'conv3_3')
    graph['conv3_4'] = _conv2d_relu(graph['conv3_3'], 16, 'conv3_4')
    graph['avgpool3'] = _avgpool(graph['conv3_4'])
    graph['conv4_1'] = _conv2d_relu(graph['avgpool3'], 19, 'conv4_1')
    graph['conv4_2'] = _conv2d_relu(graph['conv4_1'], 21, 'conv4_2')
    graph['conv4_3'] = _conv2d_relu(graph['conv4_2'], 23, 'conv4_3')
    graph['conv4_4'] = _conv2d_relu(graph['conv4_3'], 25, 'conv4_4')
    graph['avgpool4'] = _avgpool(graph['conv4_4'])
    graph['conv5_1'] = _conv2d_relu(graph['avgpool4'], 28, 'conv5_1')
    graph['conv5_2'] = _conv2d_relu(graph['conv5_1'], 30, 'conv5_2')
    graph['conv5_3'] = _conv2d_relu(graph['conv5_2'], 32, 'conv5_3')
    graph['conv5_4'] = _conv2d_relu(graph['conv5_3'], 34, 'conv5_4')
    graph['avgpool5'] = _avgpool(graph['conv5_4'])

    return graph


def generate_noise_image(content_image, noise_ratio=CONFIG.NOISE_RATIO):
    """
    Generates a noisy image by adding random noise to the content_image
    """

    # Generate a random noise_image
    noise_image = np.random.uniform(-20, 20,
                                    (1, CONFIG.IMAGE_HEIGHT, CONFIG.IMAGE_WIDTH, CONFIG.COLOR_CHANNELS)).astype(
        'float32')

    # Set the input_image to be a weighted average of the content_image and a noise_image
    input_image = noise_image * noise_ratio + content_image * (1 - noise_ratio)

    return input_image


def reshape_and_normalize_image(image):
    """
    Reshape and normalize the input image (content or style)
    """

    # Reshape image to mach expected input of VGG16
    image = np.reshape(image, ((1,) + image.shape))

    # Substract the mean to match the expected input of VGG16
    imag e = image - CONFIG.MEANS

    return image


def save_image(path, image):
    # Un-normalize the image so that it looks good
    image = image + CONFIG.MEANS

    # Clip and Save the image
    image = np.clip(image[0], 0, 255).astype('uint8')
    scipy.misc.imsave(path, image)

3. 风格迁移UI

from PyQt5.QtWidgets import QAction,QWidget,QPushButton,QLabel
from PyQt5.QtGui import QImage,QPixmap
from part3 import neural_style_transfer_core
import numpy as np
def init_style_transfer_menubar(instance):
    # 连接信号,当该信号被发射后执行括号内被连接函数
    instance.signal_neural_style_transfer.connect(neural_style_transfer_core.neual_style_transfer)

    # 创建一个窗口,定义位置,标题等属性
    instance.widget_neural_style_transfer=QWidget()
    instance.widget_neural_style_transfer.setGeometry(300, 300, 280, 170)
    instance.widget_neural_style_transfer.setWindowTitle('基于神经网络的风格迁移')

    # 创建一个按钮,该按钮的父对象为instance.widget_neural_style_transfer
    # 当该按钮被点击时执行信号发射函数
    instance.button_neural_style_stop=QPushButton("开始",instance.widget_neural_style_transfer)
    instance.button_neural_style_stop.setGeometry(30, 30, 50, 50)
    instance.button_neural_style_stop.clicked.connect(instance.signal_neural_style_emit)

    # 创建一个action,当该action被触发时运行show_neural_style_transfer_widget
    # show_neural_style_transfer_widget的作用为显示风格迁移操作窗口widget_neural_style_transfer
    action_neural_style_widget_show = QAction('&基于神经网络的风格迁移', instance)
    action_neural_style_widget_show.triggered.connect(instance.show_neural_style_transfer_widget)

    # 新增一个菜单选项:艺术风格迁移
    # 艺术风格迁移选项新增一个Action:基于神经网络的风格迁移
    menubar = instance.menuBar()
    tempMenu = menubar.addMenu('&艺术风格迁移')
    tempMenu.addAction(action_neural_style_widget_show)

    #参考的风格图片路径
    instance.style_file_transfer = ""

    instance.button_choose_style_image = QPushButton("选择风格图像",instance.widget_neural_style_transfer)
    instance.button_choose_style_image.clicked.connect(instance.open_file_and_change_name)

    instance.label_style_file = QLabel(instance.widget_neural_style_transfer)
    instance.label_style_file.setGeometry(30,80,500,50)
    instance.label_style_file.setText("风格文件路径")

    #最终结果图像显示
    instance.image_result_image = np.uint8(np.zeros((400,400,3)))
    display_image = QImage(instance.image_result_image[:],instance.image_result_image.shape[1],
                          instance.image_result_image.shape[0],instance.image_result_image.shape[1]*3,
                          QImage.Format_RGB888)

    instance.image_result_image_width = 400
    instance.image_result_image_height = instance.image_result_image.shape[0] / instance.image_result_image.shape[1] * instance.image_result_image_width

    instance.style_result_image_pixmap = QPixmap(display_image)

    instance.style_result_lbl = QLabel(instance.widget_neural_style_transfer)
    instance.style_result_lbl.setPixmap(instance.style_result_image_pixmap)
    instance.style_result_lbl.resize(instance.image_result_image_width,instance.image_result_image_height)
    instance.style_result_lbl.setScaledContents(True)
    instance.style_result_lbl.setGeometry(200,200,instance.image_result_image_width,instance.image_result_image_height)


def update_image(instance):
    #更新LABEL图片显示
    display_image = QImage(instance.image_result_image[:], instance.image_result_image.shape[1],
                           instance.image_result_image.shape[0], instance.image_result_image.shape[1] * 3,
                           QImage.Format_RGB888)

    instance.image_result_image_width = 400
    instance.image_result_image_height = instance.image_result_image.shape[0] / instance.image_result_image.shape[
        1] * instance.image_result_image_width

    instance.style_result_image_pixmap = QPixmap(display_image)

    instance.style_result_lbl.setPixmap(instance.style_result_image_pixmap)
    instance.style_result_lbl.resize(instance.image_result_image_width, instance.image_result_image_height)
    instance.style_result_lbl.setScaledContents(True)
    instance.style_result_lbl.setGeometry(400, 300, instance.image_result_image_width,
                                          instance.image_result_image_height)

在主要UI.py文件定义信号关联函数如下

# style transfer menubar 风格迁移菜单初始化
    def style_transfer_menubar(self):
        m_init_style_transfer.init_style_transfer_menubar(self)

    # 显示基于神经网络的风格迁移操作窗口
    def show_neural_style_transfer_widget(self):
        self.widget_neural_style_transfer.show()

    # 信号发射,执行该信号关联的函数
    def signal_neural_style_emit(self):
        self.signal_neural_style_transfer.emit(self)

    def open_file_and_change_name(self):
        self.style_file_transfer = QFileDialog.getOpenFileName(self,"选择文件",self.root_path+"/part3/images","photo(*.jpg *.png)")
        self.label_style_file.setText(self.style_file_transfer[0])

二. 实现效果示例

在有风格学习图片的情况下,均可实现风格的迁移。
以下使用手绘插图与梵高抽象画风两种风格进行示例。


1. 手绘风格迁移

风格学习图片如下,即上文提到的style_image

【个人】项目实训 | 基于神经网络的风格迁移_第1张图片

等待处理图片如下,即上文提到的content_image

【个人】项目实训 | 基于神经网络的风格迁移_第2张图片
最终得到的结果图片如下

【个人】项目实训 | 基于神经网络的风格迁移_第3张图片


2. 梵高抽象画风迁移

风格学习图片如下,即上文提到的style_image

【个人】项目实训 | 基于神经网络的风格迁移_第4张图片
等待处理图片如下,即上文提到的content_image

【个人】项目实训 | 基于神经网络的风格迁移_第5张图片

最终得到的结果图片如下

【个人】项目实训 | 基于神经网络的风格迁移_第6张图片


总结

一. 主要工作

  • pycharm编译器环境配置
  • 学习并移植基于神经网络的风格迁移
  • 可自主选择处理图片与风格学习图片
  • 运行风格迁移功能的UI界面
  • 可自动显示处理完成图片并保存图片

二. 有待改进

  • 风格迁移所需时间较长
  • 不能自主选择图片保存路径
  • UI界面有待美化

三. 参考链接

https://blog.csdn.net/u013733326/article/details/80767079

你可能感兴趣的:(项目实训)