前几天有博友咨询,能否在视频中实现雪花飘落的效果,答案是肯定的。老猿前天简单构思了一下,利用周末时间,使用OpenCV-Python通过图像循环显示方式,实现了给图片显示增加动态雪花飘落的效果,经过不停优化,效果还是不错的,花了半天时间将实现过程总结成文,供大家参考。
本次雪花来源于如下图片(文件名:f:\pic\snow.jpg
):
背景可以是任意图片,下面是老猿在网上找到的一张珠峰图像(文件名:f:\pic\Qomolangma2.jpg
):
珠峰背景的天空飘落着纷纷扬扬的雪花,意境不错吧?
要实现雪花飘落,单张图片的单次显示肯定不够,需要不停循环显示图片,并且在每次图片显示时,生成新的雪花并更新图片中已有雪花的位置,这就需要将图片中每个雪花的位置精确管理。
自然界的雪花大小是不同的,因此为了提升逼真效果,还需要使得雪花大小在一定范围内随机变化和旋转。
不停产生大小不同的雪花,如果每次产生雪花都对雪花进行变换其实浪费了系统的资源,因此为了提升处理性能,只在程序开始初始化时一次批量生产各种不同大小、不同旋转角度的各种雪花,后续程序生成雪花时,直接从批量生成的雪花中取一个作为要生成的雪花,而不用每次从基本的雪花图像开始进行变换。
def initSnowShapes():
"""
从文件中读入雪花图片,并进行不同尺度的缩小和不同角度的旋转从而生成不同的雪花形状,这些雪花形状保存到全局列表中snowShapesList
"""
global snowShapesList
imgSnow = readImgFile(r'f:\pic\snow.jpg')
imgSnow = cv2.resize(imgSnow, None, fx=0.2, fy=0.2) #图片文件中的雪花比较大,需要缩小才能象自然的雪花形象
minFactor,maxFactor = 50,100 #雪花大小在imgSnow的0.5-1倍之间变化
for factor in range(minFactor,maxFactor,5): #每次增加5%大小
f = factor*0.01
imgSnowSize = cv2.resize(imgSnow, None, fx=f, fy=f)
for ange in range(0,360,5):#雪花0-360之间旋转
imgRotate = rotationImg(imgSnowSize,ange)
snowShapesList.append(imgRotate)
def generateOneRowSnows(width,count):
"""
产生一排雪花对象,每个雪花随机从snowShapesList取一个、横坐标位置随机、纵坐标初始为0
:param width: 背景图像宽度
:param count: 希望的雪花数
:return:一个包含产生的多个雪花对象信息的列表,每个列表的元素代表一个雪花对象,雪花对象包含三个信息,在snowShapesList的索引号、初始x坐标、初始y坐标(才生成固定为0)
"""
global snowShapesList
line = []
picCount = len(snowShapesList)
for loop in range(count):
imgId = random.randint(0,picCount-1)
xPos = random.randint(0,width-1)
line.append((imgId,xPos,0))
return line
def putSnowObjectToImg(img):
"""
将所有snowObjects中的雪花对象融合放到图像img中,融合时y坐标随机下移一定高度,x坐标左右随机小范围内移动
"""
global snowShapesList,snowObjects
horizontalMaxDistance,verticalMaxDistance = 5,20 #水平方向左右漂移最大值和竖直方向下落最大值
snowObjectCount = len(snowObjects)
rows,cols = img.shape[0:2]
imgResult = np.array(img)
for index in range(snowObjectCount-1,-1,-1):
imgObj = snowObjects[index] #每个元素为(imgId,x,y)
if imgObj[2]>rows: #如果雪花的起始纵坐标已经超出背景图像的高度(即到达背景图像底部),则该雪花对象需进行失效处理
del(snowObjects[index])
else:
imgSnow = snowShapesList[imgObj[0]]
x,y = imgObj[1:] #取该雪花上次的位置
x = x+random.randint(-1*horizontalMaxDistance,horizontalMaxDistance) #横坐标随机左右移动一定范围
y = y+random.randint(1,verticalMaxDistance) #纵坐标随机下落一定范围
snowObjects[index] = (imgObj[0],x,y) #更新雪花对象信息
imgResult = addImgToLargeImg(imgSnow,imgResult,(x,y),180) #将所有雪花对象图像按照其位置融合到背景图像中
return imgResult #返回融合图像
主函数读入背景图片,初始化雪花形状列表,然后循环自顶部产生一排新的雪花,并将所有雪花对象动态调整位置后融合到背景图像,每200毫秒循环一次,直至按ESC退出。
def main():
global snowShapesList,snowObjects
bg = readImgFile(r'f:\pic\Qomolangma2.jpg')
initSnowShapes()
rows,cols = bg.shape[:2]
maxObjsPerRow = int(cols/100)
while(True):
snowObjects += generateOneRowSnows(cols,random.randint(0,maxObjsPerRow))
result = putSnowObjectToImg(bg)
cv2.imshow('result',result)
ch = cv2.waitKey(200)
if ch==27:break
程序的执行直接直接main函数即可,另外本程序还用到了部分老猿经常用的公用函数,这部分函数包括readImgFile、addImgToLargeImg、rotationImg,其功能请参考《https://blog.csdn.net/LaoYuanPython/article/details/111351901 OpenCV-Python图形图像处理:自用的一些工具函数功能及调用语法介绍》的介绍,根据介绍大家自行实现相关代码并不难。
# -*- coding: utf-8 -*-
import cv2,random
import numpy as np
from opencvPublic import addImgToLargeImg,readImgFile,rotationImg
snowShapesList = [] #雪花形状列表
snowObjects=[] #图片中要显示的所有雪花对象
def initSnowShapes():
"""
从文件中读入雪花图片,并进行不同尺度的缩小和不同角度的旋转从而生成不同的雪花形状,这些雪花形状保存到全局列表中snowShapesList
"""
global snowShapesList
imgSnow = readImgFile(r'f:\pic\snow.jpg')
imgSnow = cv2.resize(imgSnow, None, fx=0.2, fy=0.2) #图片文件中的雪花比较大,需要缩小才能象自然的雪花形象
minFactor,maxFactor = 50,100 #雪花大小在imgSnow的0.5-1倍之间变化
for factor in range(minFactor,maxFactor,5): #每次增加5%大小
f = factor*0.01
imgSnowSize = cv2.resize(imgSnow, None, fx=f, fy=f)
for ange in range(0,360,5):#雪花0-360之间旋转,每次旋转角度增加5°
imgRotate = rotationImg(imgSnowSize,ange)
snowShapesList.append(imgRotate)
def generateOneRowSnows(width,count):
"""
产生一排雪花对象,每个雪花随机从snowShapesList取一个、横坐标位置随机、纵坐标初始为0
:param width: 背景图像宽度
:param count: 希望的雪花数
:y:当前行对应的竖直坐标
:return:一个包含产生的多个雪花对象信息的列表,每个列表的元素代表一个雪花对象,雪花对象包含三个信息,在snowShapesList的索引号、初始x坐标、初始y坐标(才生成固定为0)
"""
global snowShapesList
line = []
picCount = len(snowShapesList)
for loop in range(count):
imgId = random.randint(0,picCount-1)
xPos = random.randint(0,width-1)
line.append((imgId,xPos,0))
return line
def putSnowObjectToImg(img):
"""
将所有snowObjects中的雪花对象融合放到图像img中,融合时y坐标随机下移一定高度,x坐标左右随机小范围内移动
"""
global snowShapesList,snowObjects
horizontalMaxDistance,verticalMaxDistance = 5,20 #水平方向左右漂移最大值和竖直方向下落最大值
snowObjectCount = len(snowObjects)
rows,cols = img.shape[0:2]
imgResult = np.array(img)
for index in range(snowObjectCount-1,-1,-1):
imgObj = snowObjects[index] #每个元素为(imgId,x,y)
if imgObj[2]>rows: #如果雪花的起始纵坐标已经超出背景图像的高度(即到达背景图像底部),则该雪花对象需进行失效处理
del(snowObjects[index])
else:
imgSnow = snowShapesList[imgObj[0]]
x,y = imgObj[1:] #取该雪花上次的位置
x = x+random.randint(-1*horizontalMaxDistance,horizontalMaxDistance) #横坐标随机左右移动一定范围
y = y+random.randint(1,verticalMaxDistance) #纵坐标随机下落一定范围
snowObjects[index] = (imgObj[0],x,y) #更新雪花对象信息
imgResult = addImgToLargeImg(imgSnow,imgResult,(x,y),180) #将所有雪花对象图像按照其位置融合到背景图像中
return imgResult #返回融合图像
def main():
global snowShapesList,snowObjects
initSnowShapes()
bg = readImgFile(r'f:\pic\Qomolangma2.jpg')
rows,cols = bg.shape[:2]
maxObjsPerRow = int(cols/100)
while(True):
snowObjects += generateOneRowSnows(cols,random.randint(0,maxObjsPerRow))
result = putSnowObjectToImg(bg)
cv2.imshow('result',result)
ch = cv2.waitKey(200)
if ch==27:break
main()
本文介绍了通过OpenCV-Python以特定图像为背景制作雪花飘落特效的实现思路、关键函数功能以及主程序的完整代码。雪花飘落特效实际上属于图像融合的操作,只要掌握图像融合的基础知识以及设计后实现思路,实现起来还是比较快的,效果也挺不错。结合上面代码,大家还可以调整雪花的大小以及飘雪的密集程度。
有了以上内容的介绍,要实现视频加雪花特效就很容易了,只要将上述过程使用的关键步骤叠加Moviepy音视频处理合成就可以实现,老猿对本文的代码稍进行调整,然后写了个三行代码的函数就完成了相关处理,相信学习过Moviepy的都能很快实现,在此就不多介绍了,等过一阵子老猿再在Moviepy相关专栏发布相关实现。
以上实现过程需要注意:
雪花图片一般会比图片需要的效果大,怎么缩小到合适的大小需要多试一下,下面是才开始将原始图片只缩写一半之后的效果。
可以看到该效果就不太让人满意。
控制好雪花左右移动以及下落的速度和幅度,太快、太慢以及幅度过大或过小都不太象在雪花飘落。
更多图像处理的介绍请参考专栏《OpenCV-Python图形图像处理 https://blog.csdn.net/laoyuanpython/category_9979286.html》和《https://blog.csdn.net/laoyuanpython/category_10581071.html OpenCV-Python初学者疑难问题集》相关文章。
如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!
前两个专栏都适合有一定Python基础但无相关知识的小白读者学习,第三个专栏请大家结合《https://blog.csdn.net/laoyuanpython/category_9979286.html OpenCV-Python图形图像处理 》的学习使用。
对于缺乏Python基础的同仁,可以通过老猿的免费专栏《https://blog.csdn.net/laoyuanpython/category_9831699.html 专栏:Python基础教程目录)从零开始学习Python。
如果有兴趣也愿意支持老猿的读者,欢迎购买付费专栏。
如对文章内容存在疑问,可在博客评论区留言,或关注:老猿Python 微信公号发消息咨询。