爬虫说明:
1、本爬虫是以面向对象的方式进行代码架构的
2、本爬虫是通过将前程无忧网页转换成一定端来进行求职信息爬取的
3、本爬虫爬取的数据存入到MongoDB数据库中
4、爬虫代码中有详细注释
代码展示
import time
from pymongo import MongoClient
import requests
from lxml import html
class JobSpider():
def __init__(self):
# 构造请求头信息
self.headers = {
"User-Agent": "Mozilla/5.0 (iPhone; CPU iPhone OS 13_2_3 like Mac OS X) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/13.0.3 Mobile/15E148 Safari/604.1"
}
# 起始url路径
self.start_url = 'https://msearch.51job.com/job_list.php?keyword=python&jobarea=000000&pageno=1'
# 求职列表页url
self.url_list = 'https://msearch.51job.com/job_list.php?keyword=python&jobarea=000000&pageno={}'
# 初始化MongoDB数据库
self.client = MongoClient()
self.collection = self.client['test']['wuyou_job']
# 构造所有列表页的url地址
def get_url_list(self,total_num):
total_num = int(total_num)
page = total_num//50+1 if total_num%50!=0 else total_num//50
return [self.url_list.format(i) for i in range(1,page+1)]
# 请求并解析网页
def parse_url(self,url):
# 睡眠 防止因爬取速度过快而导致程序停止
time.sleep(0.5)
rest = requests.get(url,headers=self.headers)
return rest.content.decode()
# 获取列表页数据
def get_content_list(self,str_html):
str_html = html.etree.HTML(str_html)
# 将求职信息进行分组
job_list = str_html.xpath('//div[@id="pageContent"]/div[@class="list"]/a')
# 遍历每一个求职信息获取详细url 再次请求获取详细求职信息
for i in job_list:
detail_url = i.xpath('./@href')[0]
self.parse_detail(detail_url)
# 解析详情页
def parse_detail(self,detail_url):
time.sleep(0.1)
rest = requests.get(detail_url,headers = self.headers)
str_html = html.etree.HTML(rest.content.decode())
item = {
}
# 通过使用Python三目运算符的机制稳固爬虫程序 使爬虫在未爬取到信息的情况下不会报错并填充None
item['职位'] = str_html.xpath('//p[@class="jname"]/text()')
item['职位'] = item['职位'][0] if len(item['职位'])>0 else None
item['公司名称'] = str_html.xpath('//div[@class="info"]/h3/text()')
item['公司名称'] = item['公司名称'][0] if len(item['公司名称'])>0 else None
item['公司地点'] = str_html.xpath('//div[@class="jbox"]/div[@class="m_bre"]/span[2]/text()')
item['公司地点'] = item['公司地点'][0] if len(item['公司地点'])>0 else None
item['公司性质'] = str_html.xpath('//div[@class="info"]/div[@class="m_bre"]/span[1]/text()')
item['公司性质'] = item['公司性质'][0] if len(item['公司性质'])>0 else None
item['薪资'] = str_html.xpath('//p[@class="sal"]/text()')
item['薪资'] = item['薪资'][0] if len(item['薪资'])>0 else None
item['学历要求'] = str_html.xpath('//div[@class="jbox"]/div[@class="m_bre"]/span[3]/text()')
item['学历要求'] = item['学历要求'][0] if len(item['学历要求'])>0 else None
item['工作经验'] = str_html.xpath('//div[@class="jbox"]/div[@class="m_bre"]/span[4]/text()')
item['工作经验'] = item['工作经验'][0] if len(item['工作经验'])>0 else None
item['公司规模'] = str_html.xpath('//div[@class="info"]/div[@class="m_bre"]/span[2]/text()')
item['公司规模'] = item['公司规模'][0] if len(item['公司规模'])>0 else None
item['公司类型'] = str_html.xpath('//div[@class="info"]/div[@class="m_bre"]/span[3]/text()')
item['公司类型'] = item['公司类型'][0] if len(item['公司类型'])>0 else None
item['公司福利'] = str_html.xpath('//div[@class="tbox"]/span/text()')
item['公司福利'] = '-'.join(item['公司福利'])
item['发布时间'] = str_html.xpath('//span[@class="date"]/text()')
item['发布时间'] = item['发布时间'][0] if len(item['发布时间'])>0 else None
print(item)
self.save(item)
# 保存爬取内容
def save(self,item):
self.collection.insert(item)
# 主函数
def run(self):
# 先请求一次起始url获取总搜索条数
rest = requests.get(self.start_url,headers = self.headers)
str_html = html.etree.HTML(rest.content.decode())
total_num = str_html.xpath('//p[@class="result"]/span/text()')[0]
# 获取所有的列表页
url_list = self.get_url_list(total_num)
# 遍历列表页
for i in url_list:
str_html = self.parse_url(i)
self.get_content_list(str_html)
if __name__ == '__main__':
job = JobSpider()
job.run()
数据分析和数据可视化说明:
1、本博客通过Flask框架来进行数据分析和数据可视化
2、项目的架构图为
代码展示
import re
import pandas as pd
import numpy as np
from pymongo import MongoClient
import pymysql
# 薪资处理函数 将薪资转换成以千为单位的数值 针对不同类型进行不同的处理
def salary_process(df):
# 处理元/每天的数据
df['薪资'] = df['薪资'].apply(
lambda x: str(round(float(re.findall('(.*)元', x)[0]) / 1000 * 30, 1)) if x.endswith('元/天') else x)
# 处理千/月的数据
df['薪资'] = df['薪资'].apply(lambda x: str(
round((float(re.findall(r'(.*)千', x)[0].split('-')[0]) + float(re.findall(r'(.*)千', x)[0].split('-')[1])) / 2,
1)) if x.endswith('千/月') else x)
# 处理万/月的数据
df['薪资'] = df['薪资'].apply(lambda x: str(round(
(float(re.findall(r'(.*)万', x)[0].split('-')[0]) + float(re.findall(r'(.*)万', x)[0].split('-')[1])) / 2 * 10,
1)) if len(re.findall(r'万', x)) > 0 and len(re.findall(r'-', x)) > 0 else x)
# 处理千以下/月的数据
df['薪资'] = df['薪资'].apply(lambda x: re.findall('(.*)千以下', x)[0] if x.endswith('千以下/月') else x)
# 将除以上结果的数据删除
df['薪资'] = df['薪资'].apply(lambda x: x if len(re.findall('\d\.\d', x)) > 0 else np.nan)
df['薪资'].dropna(how='any', inplace=True)
# 将薪资类型转换成float
df['薪资'] = df['薪资'].astype(np.float)
df.reset_index(drop=True, inplace=True)
return df
# 工作经验与薪资的关系
def experience_salary(df):
# 按照薪资进行分组
grouped = df.groupby('工作经验')['薪资'].mean().reset_index()
# 数据只保留带有工作经验和在校生的部分
grouped = grouped[(grouped['工作经验'].str.contains('经验'))|(grouped['工作经验'].str.contains('在校生'))]
# 将单位转换成万并保留一位小数
grouped['薪资'] = grouped['薪资'].apply(lambda x:round(x/10,1))
# 将数据转换成列表嵌套列表的格式方便数据库批量导入
data = [[i['工作经验'],i['薪资']] for i in grouped.to_dict(orient='records')]
print(data)
return data
# 学历与薪资的关系
def education_salary(df):
grouped = df.groupby('学历要求').mean().reset_index()
grouped['薪资'] = grouped['薪资'].apply(lambda x:round(x/10,1))
# 将非学历字段删除
grouped = grouped[grouped['学历要求'].str.contains('经验')==False]
# 将数据转换成列表嵌套列表的格式方便数据库批量导入
data = [[i['学历要求'],i['薪资']] for i in grouped.to_dict(orient='records')]
return data
# python城市需求地理位置分布图
def city_need(df):
# 各城市的经纬度数据
geoCoordMap = {
'海门': [121.15, 31.89],
'鄂尔多斯': [109.781327, 39.608266],
'招远': [120.38, 37.35],
'舟山': [122.207216, 29.985295],
'齐齐哈尔': [123.97, 47.33],
'盐城': [120.13, 33.38],
'赤峰': [118.87, 42.28],
'青岛': [120.33, 36.07],
'乳山': [121.52, 36.89],
'金昌': [102.188043, 38.520089],
'泉州': [118.58, 24.93],
'莱西': [120.53, 36.86],
'日照': [119.46, 35.42],
'胶南': [119.97, 35.88],
'南通': [121.05, 32.08],
'拉萨': [91.11, 29.97],
'云浮': [112.02, 22.93],
'梅州': [116.1, 24.55],
'文登': [122.05, 37.2],
'上海': [121.48, 31.22],
'攀枝花': [101.718637, 26.582347],
'威海': [122.1, 37.5],
'承德': [117.93, 40.97],
'厦门': [118.1, 24.46],
'汕尾': [115.375279, 22.786211],
'潮州': [116.63, 23.68],
'丹东': [124.37, 40.13],
'太仓': [121.1, 31.45],
'曲靖': [103.79, 25.51],
'烟台': [121.39, 37.52],
'福州': [119.3, 26.08],
'瓦房店': [121.979603, 39.627114],
'即墨': [120.45, 36.38],
'抚顺': [123.97, 41.97],
'玉溪': [102.52, 24.35],
'张家口': [114.87, 40.82],
'阳泉': [113.57, 37.85],
'莱州': [119.942327, 37.177017],
'湖州': [120.1, 30.86],
'汕头': [116.69, 23.39],
'昆山': [120.95, 31.39],
'宁波': [121.56, 29.86],
'湛江': [110.359377, 21.270708],
'揭阳': [116.35, 23.55],
'荣成': [122.41, 37.16],
'连云港': [119.16, 34.59],
'葫芦岛': [120.836932, 40.711052],
'常熟': [120.74, 31.64],
'东莞': [113.75, 23.04],
'河源': [114.68, 23.73],
'淮安': [119.15, 33.5],
'泰州': [119.9, 32.49],
'南宁': [108.33, 22.84],
'营口': [122.18, 40.65],
'惠州': [114.4, 23.09],
'江阴': [120.26, 31.91],
'蓬莱': [120.75, 37.8],
'韶关': [113.62, 24.84],
'嘉峪关': [98.289152, 39.77313],
'广州': [113.23, 23.16],
'延安': [109.47, 36.6],
'太原': [112.53, 37.87],
'清远': [113.01, 23.7],
'中山': [113.38, 22.52],
'昆明': [102.73, 25.04],
'寿光': [118.73, 36.86],
'盘锦': [122.070714, 41.119997],
'长治': [113.08, 36.18],
'深圳': [114.07, 22.62],
'珠海': [113.52, 22.3],
'宿迁': [118.3, 33.96],
'咸阳': [108.72, 34.36],
'铜川': [109.11, 35.09],
'平度': [119.97, 36.77],
'佛山': [113.11, 23.05],
'海口': [110.35, 20.02],
'江门': [113.06, 22.61],
'章丘': [117.53, 36.72],
'肇庆': [112.44, 23.05],
'大连': [121.62, 38.92],
'临汾': [111.5, 36.08],
'吴江': [120.63, 31.16],
'石嘴山': [106.39, 39.04],
'沈阳': [123.38, 41.8],
'苏州': [120.62, 31.32],
'茂名': [110.88, 21.68],
'嘉兴': [120.76, 30.77],
'长春': [125.35, 43.88],
'胶州': [120.03336, 36.264622],
'银川': [106.27, 38.47],
'张家港': [120.555821, 31.875428],
'三门峡': [111.19, 34.76],
'锦州': [121.15, 41.13],
'南昌': [115.89, 28.68],
'柳州': [109.4, 24.33],
'三亚': [109.511909, 18.252847],
'自贡': [104.778442, 29.33903],
'吉林': [126.57, 43.87],
'阳江': [111.95, 21.85],
'泸州': [105.39, 28.91],
'西宁': [101.74, 36.56],
'宜宾': [104.56, 29.77],
'呼和浩特': [111.65, 40.82],
'成都': [104.06, 30.67],
'大同': [113.3, 40.12],
'镇江': [119.44, 32.2],
'桂林': [110.28, 25.29],
'张家界': [110.479191, 29.117096],
'宜兴': [119.82, 31.36],
'北海': [109.12, 21.49],
'西安': [108.95, 34.27],
'金坛': [119.56, 31.74],
'东营': [118.49, 37.46],
'牡丹江': [129.58, 44.6],
'遵义': [106.9, 27.7],
'绍兴': [120.58, 30.01],
'扬州': [119.42, 32.39],
'常州': [119.95, 31.79],
'潍坊': [119.1, 36.62],
'重庆': [106.54, 29.59],
'台州': [121.420757, 28.656386],
'南京': [118.78, 32.04],
'滨州': [118.03, 37.36],
'贵阳': [106.71, 26.57],
'无锡': [120.29, 31.59],
'本溪': [123.73, 41.3],
'克拉玛依': [84.77, 45.59],
'渭南': [109.5, 34.52],
'马鞍山': [118.48, 31.56],
'宝鸡': [107.15, 34.38],
'焦作': [113.21, 35.24],
'句容': [119.16, 31.95],
'北京': [116.46, 39.92],
'徐州': [117.2, 34.26],
'衡水': [115.72, 37.72],
'包头': [110, 40.58],
'绵阳': [104.73, 31.48],
'乌鲁木齐': [87.68, 43.77],
'枣庄': [117.57, 34.86],
'杭州': [120.19, 30.26],
'淄博': [118.05, 36.78],
'鞍山': [122.85, 41.12],
'溧阳': [119.48, 31.43],
'库尔勒': [86.06, 41.68],
'安阳': [114.35, 36.1],
'开封': [114.35, 34.79],
'济南': [117, 36.65],
'德阳': [104.37, 31.13],
'温州': [120.65, 28.01],
'九江': [115.97, 29.71],
'邯郸': [114.47, 36.6],
'临安': [119.72, 30.23],
'兰州': [103.73, 36.03],
'沧州': [116.83, 38.33],
'临沂': [118.35, 35.05],
'南充': [106.110698, 30.837793],
'天津': [117.2, 39.13],
'富阳': [119.95, 30.07],
'泰安': [117.13, 36.18],
'诸暨': [120.23, 29.71],
'郑州': [113.65, 34.76],
'哈尔滨': [126.63, 45.75],
'聊城': [115.97, 36.45],
'芜湖': [118.38, 31.33],
'唐山': [118.02, 39.63],
'平顶山': [113.29, 33.75],
'邢台': [114.48, 37.05],
'德州': [116.29, 37.45],
'济宁': [116.59, 35.38],
'荆州': [112.239741, 30.335165],
'宜昌': [111.3, 30.7],
'义乌': [120.06, 29.32],
'丽水': [119.92, 28.45],
'洛阳': [112.44, 34.7],
'秦皇岛': [119.57, 39.95],
'株洲': [113.16, 27.83],
'石家庄': [114.48, 38.03],
'莱芜': [117.67, 36.19],
'常德': [111.69, 29.05],
'保定': [115.48, 38.85],
'湘潭': [112.91, 27.87],
'金华': [119.64, 29.12],
'岳阳': [113.09, 29.37],
'长沙': [113, 28.21],
'衢州': [118.88, 28.97],
'廊坊': [116.7, 39.53],
'菏泽': [115.480656, 35.23375],
'合肥': [117.27, 31.86],
'武汉': [114.31, 30.52],
'大庆': [125.03, 46.58]
};
geoCoordMap = list(geoCoordMap.keys())
# 对城市数据进行处理
df['公司地点'] = df['公司地点'].apply(lambda x:x.split('-')[0] if len(re.findall(r'-',x))>0 else x)
# 对数据按照城市进行分组
grouped = df.groupby('公司地点')['职位'].count().reset_index()
grouped = grouped[grouped['公司地点'].isin(geoCoordMap)].sort_values('职位',ascending=False)
# 将数据转换成列表嵌套列表
data = [[i['公司地点'], i['职位']] for i in grouped.to_dict(orient='records')]
return data
# 工作经验的人数分布图
def experience_count(df):
grouped = df.groupby('工作经验')['职位'].count().reset_index()
# 过滤非工作经验数据
grouped = grouped[(grouped['工作经验'].str.contains('经验'))|(grouped['工作经验'].str.contains('在校生'))]
# 将数据转换成列表嵌套列表的格式方便数据库批量导入
data = [[i['工作经验'], i['职位']] for i in grouped.to_dict(orient='records')]
return data
# 学历的人数分布图
def eduction_count(df):
grouped = df.groupby('学历要求')['职位'].count().reset_index()
# 过滤非学历数据
grouped = grouped[grouped['学历要求'].str.contains('经验')==False]
# 将数据转换成列表嵌套列表的格式方便数据库批量导入
data = [[i['学历要求'],i['职位']] for i in grouped.to_dict(orient='records')]
print(data)
return data
# 福利类型的数量前十分布图
def welfare_count(df):
# 获取公司福利的列数据并转换成数组
welfare = df['公司福利'].str.split('-').tolist()
# 将列表嵌套列表的数据转换成一个列表的数据
welfare_list = [j for i in welfare for j in i]
# 去除重复项
# 第一种方式将数据转换成Series再使用unique()方法
# welfare_list = pd.Series(welfare_list).unique()
# 第二种方式利用set集合的特性将数据转换成set集合再转换成字典
welfare_list = list(set(welfare_list))
# 构造0的矩阵列索引为福利类型,行索引为数据长度序列
zero_list = pd.DataFrame(np.zeros((len(welfare),len(welfare_list))),columns=welfare_list)
# 由于数据长度多而福利类型长度较少,因此选择遍历福利类型
for i in welfare_list:
zero_list[i][df['公司福利'].str.contains(i)] = 1
# 将数据累加的数据转换成np.int类型并进行排序
welfare_nums = zero_list.sum().astype(np.int).sort_values(ascending=False)
# 重新创建索引以方便对采用聚合函数的列数据进行操作
welfare_nums = welfare_nums.reset_index()
# 数据中有许多数据虽然数据内容不同但是含义是相同的 因此对部分数据进行统一
welfare_nums = welfare_nums.replace(['五险','年终奖','绩效奖','体检'],['五险一金','年终奖金','绩效奖金','定期体检'])[:25]
welfare_nums = welfare_nums.replace(['.*补贴','.*年假','.*旅游','.*双休','.*医疗.*','.*奖金'],['补贴','带薪年假','员工旅游','周末双休','医疗保险','奖金'],regex=True)
# 修改数据的列索引以便后续操作
welfare_nums.columns = ['员工福利', '数量']
# 对处理好的含义相同的数据进行分组求和并进行排序获取数量占前十的福利类型
grouped = welfare_nums.groupby('员工福利')['数量'].sum().reset_index()
grouped = grouped.sort_values(by='数量',ascending=False)[:10]
print(grouped)
data = [[i['员工福利'],i['数量']] for i in grouped.to_dict(orient='records')]
print(data)
return data
if __name__ == '__main__':
client = MongoClient()
collection = client['test']['wuyou_job']
# 取数据并且去掉id字段
jobs = collection.find({
}, {
'_id': 0})
# 将数据转换成DataFrame类型
df = pd.DataFrame(jobs)
# 删除重复数据
df.drop_duplicates(subset=['职位', '公司名称', '公司地点',
'公司性质', '薪资', '学历要求', '工作经验', '公司规模', '公司类型', '公司福利', '发布时间'], keep='first')
# 将公司福利列中的空字段转换成np.nan类型
df['公司福利'] = df['公司福利'].apply(lambda x: x if len(x) > 0 else np.nan)
# 删除np.nan数据
df.dropna(how='any', inplace=True)
# 对薪资列数据进行处理
df = salary_process(df)
print(df.head(1))
print(df.info())
# 工作经验与薪资的关系
# data = experience_salary(df)
# print(data)
# 学历与薪资的关系
# data = education_salary(df)
# print(data)
# python城市需求地理位置与人数分布
# data = city_need(df)
# print(data)
# 工作经验的人数分布
# data = experience_count(df)
# print(data)
# 学历人数占比
# data = eduction_count(df)
# print(data)
# 福利类型的数量前十占比
data = welfare_count(df)
# print(data)
# 建议先注释掉下方代码 在分析结果无误的情况再存入到数据库中
# 创建数据库连接 此处填写自己的数据库用户名、密码和创建的数据库名
conn = pymysql.connect(host='localhost',port=3306,user='root',password='123456',database='wuyou',charset='utf8')
# 获取游标对象
with conn.cursor() as cursor:
try:
# 工作经验与薪资的关系
# sql = 'insert into db_experience_salary(exp_date,salary) values(%s,%s)'
# 学历与薪资的关系
# sql = 'insert into db_education_salary(edu_level,salary) values(%s,%s)'
# python城市需求地理位置与人数分布
# sql = 'insert into db_city_jobs(city,count) values(%s,%s)'
# 工作经验的人数分布
# sql = 'insert into db_experience_count(exp_date,count) values(%s,%s)'
# 学历与人数占比
# sql = 'insert into db_education_count(edu_level,count) values(%s,%s)'
# 福利类型的数量前十占比
sql = 'insert into db_welfare_count(welfare,count) values(%s,%s)'
result = cursor.executemany(sql,data)
print(result)
conn.commit()
except pymysql.MySQLError as error:
print(error)
conn.rollback()
finally:
conn.close()
from api_1_0 import db
# 工作经验与薪资的关系模型
class ExperienceSalary(db.Model):
__tablename__ = 'db_experience_salary'
id = db.Column(db.Integer,primary_key=True,autoincrement=True)
exp_date = db.Column(db.String(64),nullable=False)
salary = db.Column(db.Float,nullable=False)
# 学历与薪资的关系模型
class EducationSalary(db.Model):
__tablename__ = 'db_education_salary'
id = db.Column(db.Integer,primary_key=True,autoincrement=True)
edu_level = db.Column(db.String(64),nullable=False)
salary = db.Column(db.Float,nullable=False)
# 不同城市与Python求职人数的关系模型
class CityJobs(db.Model):
__tablename__ = 'db_city_jobs'
id = db.Column(db.Integer,primary_key=True,autoincrement=True)
city = db.Column(db.String(64),nullable=False)
count = db.Column(db.Integer,nullable=False)
# 不同工作经验与求职人数的关系模型
class ExperienceCount(db.Model):
__tablename__ = 'db_experience_count'
id = db.Column(db.Integer,primary_key=True,autoincrement=True)
exp_date = db.Column(db.String(64),nullable=False)
count = db.Column(db.Integer,nullable=False)
# 不同学历与求职人数的关系模型
class EducationCount(db.Model):
__tablename__ = 'db_education_count'
id = db.Column(db.Integer,primary_key=True,autoincrement=True)
edu_level = db.Column(db.String(64),nullable=False)
count = db.Column(db.Integer,nullable=False)
# 不同福利类型与求职人数的关系模型
class WelfareCount(db.Model):
__tablename__ = 'db_welfare_count'
id = db.Column(db.Integer,primary_key=True,autoincrement=True)
welfare = db.Column(db.String(64),nullable=True)
count = db.Column(db.Integer,nullable=False)
class Config(object):
# 配置文件信息
SECRET_KEY = 'ma5211314'
# 数据库
SQLALCHEMY_DATABASE_URI = 'mysql://root:123456@localhost:3306/wuyou'
SQLALCHEMY_TRACK_MODIFICATIONS = True
class DevelopmentConfig(Config):
DEBUG = True
class ProjectConfig(Config):
pass
# 采用映射方式方便后续调用配置类
config_map = {
'develop':DevelopmentConfig,'project':ProjectConfig}
from flask import Flask
from config import config_map
from flask_sqlalchemy import SQLAlchemy
import pymysql
# python3的pymysql取代了mysqldb库 为了防止出现 ImportError: No module named ‘MySQLdb’的错误
pymysql.install_as_MySQLdb()
db = SQLAlchemy()
# 采用工厂模式创建app实例
def create_app(config_name='develop'):
app = Flask(__name__)
# 加载配置类
config = config_map[config_name]
app.config.from_object(config)
db.init_app(app)
# 注册蓝图
from . import view
app.register_blueprint(view.blue,url_prefix='/show')
return app
import flask
from flask_script import Manager
from api_1_0 import create_app,db
from flask_migrate import Migrate,MigrateCommand
from flask import render_template
app = create_app()
manger = Manager(app)
Migrate(app,db)
manger.add_command('db',MigrateCommand)
@app.route('/')
def index():
return render_template('index.html')
if __name__ == '__main__':
manger.run()
_init_.py
from flask import Blueprint
# 为了在主程序运行时能够加载到模型类
from api_1_0 import db,models
blue = Blueprint('job',__name__)
# 导入定义的视图函数
from . import show
show.py
from api_1_0.view import blue
from ..models import EducationCount,EducationSalary,ExperienceCount,ExperienceSalary,WelfareCount,CityJobs
from flask import render_template
'''
将数据转换成列表的形式或者是列表嵌套字典的形式
locals()方法能够以字典的形式返回函数内所有声明的变量
'''
# 工作经验与薪资的关系图和学历与薪资的关系图
@blue.route('/drawLine')
def drawLine():
exp_data = ExperienceSalary.query.all()
exp_date = [i.exp_date for i in exp_data]
exp_sal = [i.salary for i in exp_data]
edu_data = EducationSalary.query.all()
edu_level = [i.edu_level for i in edu_data]
edu_sal = [i.salary for i in edu_data]
return render_template('showLine.html',**locals())
# python城市需求地理位置与人数分布
@blue.route('/drawGeo')
def drawGeo():
city_jobs_data = CityJobs.query.all()
city_job = [{
'name':i.city,'value':i.count} for i in city_jobs_data]
return render_template('showGeo.html',**locals())
# 工作经验的人数柱状图
@blue.route('/drawBar')
def drawBar():
exp_count_data = ExperienceCount.query.all()
exp_date = [i.exp_date for i in exp_count_data]
count = [i.count for i in exp_count_data]
return render_template('showBar.html',**locals())
# 福利类型的数量前十占比图和学历与人数占比图
@blue.route('/drawPie')
def drawPie():
wel_count_data = WelfareCount.query.all()
wel_count = [{
'name':i.welfare,'value':i.count} for i in wel_count_data]
edu_count_date = EducationCount.query.all()
edu_count = [{
'name':i.edu_level,'value':i.count} for i in edu_count_date]
return render_template('showPie.html', **locals())
主页简单创建了四个超链接指向对应的图表
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>首页说明</title>
<style>
.container{
width: 100%;
height: 600px;
padding: 40px;
line-height: 60px;
}
ul{
margin: auto;
width: 60%;
}
</style>
</head>
<body>
<div class="container">
<ul>
<li><a href="http://127.0.0.1:5000/show/drawBar" target="_blank"><h3>工作经验与人数分布图</h3></a></li>
<li><a href="http://127.0.0.1:5000/show/drawGeo" target="_blank"><h3>python城市需求地理位置分布图</h3></a></li>
<li><a href="http://127.0.0.1:5000/show/drawLine" target="_blank"><h3>工作经验与薪资关系图&学历与薪资关系图</h3></a></li>
<li><a href="http://127.0.0.1:5000/show/drawPie" target="_blank"><h3>福利类型数量前十占比图&不同学历与求职人数占比图</h3></a></li>
</ul>
</div>
</body>
</html>
showGeo.html
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>python城市需求地理位置分布图</title>
<script src="../static/js/echarts.min.js"></script>
<script src="../static/js/jquery.min.js"></script>
<script src="../static/theme/vintage.js"></script>
</head>
<body>
<div class="chart" style="width: 800px;height: 600px;margin: auto"></div>
<script>
// 初始化echarts
var MyCharts = echarts.init(document.querySelector('.chart'),'vintage')
// 获取视图函数传入数据并转换成json格式
var city_job = {
{
city_job|tojson }}
var geoCoordMap = {
'海门':[121.15,31.89],
'鄂尔多斯':[109.781327,39.608266],
'招远':[120.38,37.35],
'舟山':[122.207216,29.985295],
'齐齐哈尔':[123.97,47.33],
'盐城':[120.13,33.38],
'赤峰':[118.87,42.28],
'青岛':[120.33,36.07],
'乳山':[121.52,36.89],
'金昌':[102.188043,38.520089],
'泉州':[118.58,24.93],
'莱西':[120.53,36.86],
'日照':[119.46,35.42],
'胶南':[119.97,35.88],
'南通':[121.05,32.08],
'拉萨':[91.11,29.97],
'云浮':[112.02,22.93],
'梅州':[116.1,24.55],
'文登':[122.05,37.2],
'上海':[121.48,31.22],
'攀枝花':[101.718637,26.582347],
'威海':[122.1,37.5],
'承德':[117.93,40.97],
'厦门':[118.1,24.46],
'汕尾':[115.375279,22.786211],
'潮州':[116.63,23.68],
'丹东':[124.37,40.13],
'太仓':[121.1,31.45],
'曲靖':[103.79,25.51],
'烟台':[121.39,37.52],
'福州':[119.3,26.08],
'瓦房店':[121.979603,39.627114],
'即墨':[120.45,36.38],
'抚顺':[123.97,41.97],
'玉溪':[102.52,24.35],
'张家口':[114.87,40.82],
'阳泉':[113.57,37.85],
'莱州':[119.942327,37.177017],
'湖州':[120.1,30.86],
'汕头':[116.69,23.39],
'昆山':[120.95,31.39],
'宁波':[121.56,29.86],
'湛江':[110.359377,21.270708],
'揭阳':[116.35,23.55],
'荣成':[122.41,37.16],
'连云港':[119.16,34.59],
'葫芦岛':[120.836932,40.711052],
'常熟':[120.74,31.64],
'东莞':[113.75,23.04],
'河源':[114.68,23.73],
'淮安':[119.15,33.5],
'泰州':[119.9,32.49],
'南宁':[108.33,22.84],
'营口':[122.18,40.65],
'惠州':[114.4,23.09],
'江阴':[120.26,31.91],
'蓬莱':[120.75,37.8],
'韶关':[113.62,24.84],
'嘉峪关':[98.289152,39.77313],
'广州':[113.23,23.16],
'延安':[109.47,36.6],
'太原':[112.53,37.87],
'清远':[113.01,23.7],
'中山':[113.38,22.52],
'昆明':[102.73,25.04],
'寿光':[118.73,36.86],
'盘锦':[122.070714,41.119997],
'长治':[113.08,36.18],
'深圳':[114.07,22.62],
'珠海':[113.52,22.3],
'宿迁':[118.3,33.96],
'咸阳':[108.72,34.36],
'铜川':[109.11,35.09],
'平度':[119.97,36.77],
'佛山':[113.11,23.05],
'海口':[110.35,20.02],
'江门':[113.06,22.61],
'章丘':[117.53,36.72],
'肇庆':[112.44,23.05],
'大连':[121.62,38.92],
'临汾':[111.5,36.08],
'吴江':[120.63,31.16],
'石嘴山':[106.39,39.04],
'沈阳':[123.38,41.8],
'苏州':[120.62,31.32],
'茂名':[110.88,21.68],
'嘉兴':[120.76,30.77],
'长春':[125.35,43.88],
'胶州':[120.03336,36.264622],
'银川':[106.27,38.47],
'张家港':[120.555821,31.875428],
'三门峡':[111.19,34.76],
'锦州':[121.15,41.13],
'南昌':[115.89,28.68],
'柳州':[109.4,24.33],
'三亚':[109.511909,18.252847],
'自贡':[104.778442,29.33903],
'吉林':[126.57,43.87],
'阳江':[111.95,21.85],
'泸州':[105.39,28.91],
'西宁':[101.74,36.56],
'宜宾':[104.56,29.77],
'呼和浩特':[111.65,40.82],
'成都':[104.06,30.67],
'大同':[113.3,40.12],
'镇江':[119.44,32.2],
'桂林':[110.28,25.29],
'张家界':[110.479191,29.117096],
'宜兴':[119.82,31.36],
'北海':[109.12,21.49],
'西安':[108.95,34.27],
'金坛':[119.56,31.74],
'东营':[118.49,37.46],
'牡丹江':[129.58,44.6],
'遵义':[106.9,27.7],
'绍兴':[120.58,30.01],
'扬州':[119.42,32.39],
'常州':[119.95,31.79],
'潍坊':[119.1,36.62],
'重庆':[106.54,29.59],
'台州':[121.420757,28.656386],
'南京':[118.78,32.04],
'滨州':[118.03,37.36],
'贵阳':[106.71,26.57],
'无锡':[120.29,31.59],
'本溪':[123.73,41.3],
'克拉玛依':[84.77,45.59],
'渭南':[109.5,34.52],
'马鞍山':[118.48,31.56],
'宝鸡':[107.15,34.38],
'焦作':[113.21,35.24],
'句容':[119.16,31.95],
'北京':[116.46,39.92],
'徐州':[117.2,34.26],
'衡水':[115.72,37.72],
'包头':[110,40.58],
'绵阳':[104.73,31.48],
'乌鲁木齐':[87.68,43.77],
'枣庄':[117.57,34.86],
'杭州':[120.19,30.26],
'淄博':[118.05,36.78],
'鞍山':[122.85,41.12],
'溧阳':[119.48,31.43],
'库尔勒':[86.06,41.68],
'安阳':[114.35,36.1],
'开封':[114.35,34.79],
'济南':[117,36.65],
'德阳':[104.37,31.13],
'温州':[120.65,28.01],
'九江':[115.97,29.71],
'邯郸':[114.47,36.6],
'临安':[119.72,30.23],
'兰州':[103.73,36.03],
'沧州':[116.83,38.33],
'临沂':[118.35,35.05],
'南充':[106.110698,30.837793],
'天津':[117.2,39.13],
'富阳':[119.95,30.07],
'泰安':[117.13,36.18],
'诸暨':[120.23,29.71],
'郑州':[113.65,34.76],
'哈尔滨':[126.63,45.75],
'聊城':[115.97,36.45],
'芜湖':[118.38,31.33],
'唐山':[118.02,39.63],
'平顶山':[113.29,33.75],
'邢台':[114.48,37.05],
'德州':[116.29,37.45],
'济宁':[116.59,35.38],
'荆州':[112.239741,30.335165],
'宜昌':[111.3,30.7],
'义乌':[120.06,29.32],
'丽水':[119.92,28.45],
'洛阳':[112.44,34.7],
'秦皇岛':[119.57,39.95],
'株洲':[113.16,27.83],
'石家庄':[114.48,38.03],
'莱芜':[117.67,36.19],
'常德':[111.69,29.05],
'保定':[115.48,38.85],
'湘潭':[112.91,27.87],
'金华':[119.64,29.12],
'岳阳':[113.09,29.37],
'长沙':[113,28.21],
'衢州':[118.88,28.97],
'廊坊':[116.7,39.53],
'菏泽':[115.480656,35.23375],
'合肥':[117.27,31.86],
'武汉':[114.31,30.52],
'大庆':[125.03,46.58]
};
var convertData = function (data) {
var res = [];
for (var i = 0; i < data.length; i++) {
var geoCoord = geoCoordMap[data[i].name];
if (geoCoord) {
res.push({
name: data[i].name,
value: geoCoord.concat(data[i].value)
});
}
}
return res;
}
$.get('../static/json/map/my_china.json',function (ret){
echarts.registerMap('chinaMap',ret)
var option = {
geo:{
type:'map',
map:'chinaMap',
roam:true,
label:{
show:true,
fontSize:10,
},
itemStyle: {
color: 'Moccasin'
},
zoom:2
},
series:[
{
data: convertData(city_job),
type: 'effectScatter',
rippleEffect: {
scale: 2 // 设置涟漪动画的缩放比例
},
itemStyle:{
color:'red'
},
coordinateSystem:'geo',
label:{
show: true,
position:'bottom',
formatter:function (rst)
{
return '城市:'+rst.name+'\n所需岗位:'+rst.value[2]
}
}
}
],
}
MyCharts.setOption(option)
})
</script>
</body>
</html>
结论:
中国东部以及东南部对Python人才的需求量大,其中以北京、上海、广州、深圳最为突出。
showBar.html
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>工作经验的人数分布图</title>
<script src="../static/js/echarts.min.js"></script>
<script src="../static/theme/vintage.js"></script>
</head>
<body>
<div class="chart" style="width: 800px;height: 600px;margin: auto"></div>
<script>
// 初始化echarts
var myCharts = echarts.init(document.querySelector('.chart'),'vintage')
// 获取视图函数传入数据并转换成json格式
var exp_date = {
{
exp_date|tojson }}
var count = {
{
count|tojson }}
var option = {
title:{
text:'工作经验的人数分布图',
textStyle:{
fontSize:21,
fontFamily:'楷体'
}
},
xAxis:{
type:'category',
data:exp_date,
axisLabel:{
interval:0,
rotate:40,
margin:10
}
},
yAxis:{
type:'value',
scale:true
},
tooltip:{
trigger:'item',
triggerOn:'mousemove',
formatter:function (rst){
return '工作经验:'+rst.name+'
'+'所需岗位:'+rst.value+'个'
}
},
legend:{
name: ['人数']
},
series:[
{
name:'人数',
type:'bar',
data:count,
label:{
show:true,
rotate: 40,
position:'top',
distance:10
},
}
]
}
myCharts.setOption(option)
</script>
</body>
</html>
结论:
Python人才需求主要集中在3-4年工作经验,市场对Python工作经验较高的人才需求较少。
showLine.html
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>工作经验与薪资关系图&学历与薪资关系图</title>
<script src="../static/js/echarts.min.js"></script>
<script src="../static/theme/dark.js"></script>
<script src="../static/theme/my_theme.js"></script>
<script src="../static/theme/vintage.js"></script>
<style>
.chart-group{
width: 100%;
height: 1000px;
padding: 50px;
display: flex;
justify-content: space-evenly;
margin: auto;
}
.chart1{
width: 600px;
height: 400px;
}
.chart2{
width: 600px;
height: 400px;
}
</style>
</head>
<body>
<div class="chart-group">
<div class="chart1"></div>
<div class="chart2"></div>
</div>
<script>
// 初始化echarts
var myCharts1 = echarts.init(document.querySelector('.chart1'),'vintage')
var myCharts2 = echarts.init(document.querySelector('.chart2'),'vintage')
// 获取视图函数传入数据并转换成json格式
var exp_date = {
{
exp_date|tojson }}
var exp_sal = {
{
exp_sal|tojson }}
var edu_level = {
{
edu_level|tojson }}
var edu_sal = {
{
edu_sal|tojson }}
function getOption(category,data,desc){
var option = {
title:{
text : desc,
textStyle:{
fontFamily:'楷体',
fontSize:21
}
},
xAxis:{
type:'category',
data:category,
axisLabel:{
interval:0,
rotate:40,
margin:10
}
},
yAxis:{
type:'value',
scale:true
},
legend:{
name:['工资水平']
},
tooltip:{
trigger:'axis',
triggerOn:'mousemove',
formatter: function (rst){
if(desc=="工作经验与薪资关系图"){
return '工作经验:'+rst[0].name+'
'+'每月薪资:'+rst[0].value+'k/月'
}else{
return '学历:'+rst[0].name+'
'+'每月薪资:'+rst[0].value+'k/月'
}
}
},
series:[
{
name:'工资水平',
type:'line',
data:data,
label:{
show:true
},
smooth:true,
markPoint:{
data:[
{
name:'最大值',
type:"max",
symbolSize:[40,40],//容器大小
symbolOffset:[0,-20],//位置偏移,
label:{
show:true,
formatter:function (rst){
return rst.name
}
}
},
{
name:'最小值',
type:'min',
symbolSize:[40,40],//容器大小
symbolOffset:[0,-20],//位置偏移
label:{
show:true,
formatter:function (rst){
return rst.name
}
}
}
]
},
markLine:{
data:[
{
name:'平均值',
type:'average',
label:{
formatter:function (rst)
{
return rst.name+":\n"+rst.value
}
}
}
]
}
}
]
}
return option
}
var option1 = getOption(exp_date,exp_sal,'工作经验与薪资关系图')
var option2 = getOption(edu_level,edu_sal,'学历与薪资关系图')
myCharts1.setOption(option1)
myCharts2.setOption(option2)
</script>
</body>
</html>
结论:
工作经验和学历与薪资呈正相关,工作经验越丰富工资越高,学历越高工资越高。
showPie.html
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>福利类型数量前十占比&不同学历与求职人数占比</title>
<script src="../static/js/echarts.min.js"></script>
<script src="../static/theme/dark.js"></script>
<script src="../static/theme/my_theme.js"></script>
<script src="../static/theme/vintage.js"></script>
<style>
.chart-group{
width: 100%;
height: 1000px;
padding: 50px;
display: flex;
justify-content: space-evenly;
margin: auto;
}
.chart1{
width: 600px;
height: 400px;
}
.chart2{
width: 600px;
height: 400px;
}
</style>
</head>
<body>
<div class="chart-group">
<div class="chart1"></div>
<div class="chart2"></div>
</div>
<script>
// 初始化echarts
var myCharts1 = echarts.init(document.querySelector('.chart1'),'vintage')
var myCharts2 = echarts.init(document.querySelector('.chart2'),'vintage')
// 获取视图函数传入数据并转换成json格式
var wel_count = {
{
wel_count|tojson }}
var edu_count = {
{
edu_count|tojson }}
var value = []
function getOption(data,desc){
var option = {
title:{
text : desc,
textStyle:{
fontFamily:'楷体',
fontSize:21
},
},
tooltip:{
trigger:'item',
triggerOn:'mousemove',
formatter:function(rst){
if(desc=="工作经验的人数分布图"){
return '福利类型:'+rst.name+'
'+'企业数量:'+rst.value+'个'+'
'+'占比:'+rst.percent+"%"
}else{
return '学历:'+rst.name+'
'+'所需岗位:'+rst.value+'人'+'
'+'占比:'+rst.percent+"%"
}
}
},
legend:{
name:['人数占比'],
orient: 'vertical',
bottom:10,
right:10,
},
series:[
{
name:'人数占比',
type:'pie',
data:data,
label:{
show:true
},
roseType:'radius',
selectedMode:'multiple',
selectedOffset: 10
}
]
}
return option
}
var option1 = getOption(wel_count,'福利类型数量前十占比')
var option2 = getOption(edu_count,'学历人数占比图')
myCharts1.setOption(option1)
myCharts2.setOption(option2)
</script>
</body>
</html>
结论:
福利类型前十中,奖金的占比超过了总占比的四分之一;学历人数中Python岗位对本科人数的需求占据总需求半数以上,对高学历和低学历的需求相对较少。
以下项目源码,希望能够帮助你们,如有疑问,下方评论
flask项目代码链接