鸿蒙内核源码分析(异常接管篇) | 社会很单纯 , 复杂的是人 | 百篇博客分析HarmonyOS源码 | v39.03

百万汉字注解 >> 精读内核源码,中文注解分析, 深挖地基工程,大脑永久记忆,四大码仓每日同步更新< gitee | github | csdn | coding >

百篇博客分析 >> 故事说内核,问答式导读,生活式比喻,表格化说明,图形化展示,主流站点定期更新中< oschina | csdn | 掘金 | weharmony >


系列篇ARM部分说明基于ARM720T.pdf文档.

为何要有异常接管?

拿小孩成长打比方,大人总希望孩子能健康成长,但在成长过程中总会遇到各种各样的问题,树欲静而风不止,成长路上有危险,有时是自己的问题有时是外在环境问题.就像抖音最近的流行口水歌一样,社会很单纯,复杂的是人啊,每次听到都想站起来扭几下.哎! 老衲到底做错什么了?

比如:老被其他小朋友欺负怎么弄? 发现乱花钱怎么搞? 青春期发育怎么应对? 失恋要跳楼又怎么办? 意思是超过他的认知范围,靠它自己解决不了了,就需要有更高权限,更高智慧的人介入进来,帮着解决,干擦屁股的事.

那么应用程序就是那个小孩,内核就是监护人,有更高的权限,更高的智慧.而且监护人还不止一个,而是六个,每个监护人对应解决一种情况,情况发生了就由它来接管这件事的处理,小朋友你就别管了哈,先把你关家里,处理好了外面安全了再把应用程序放出来玩去.

这六个人处理问题都自带工具,有标准的解决方案,有自己独立的办公场所,办公场所就是栈空间(独立的),标准解决方案就是私有代码段,放在固定的位置.而自带的工具就是 SPSR_***,SP_***,LR_***寄存器组.详见 系列篇之工作模式篇 ,这里再简单回顾下有哪些工作模式,包括小孩自己(用户模式)一共是七种模式.

七种工作模式

图来源于 ARM720T.pdf第43页,在ARM体系中,CPU工作在以下七种模式中:
在这里插入图片描述

  • 用户模式(usr):该模式是用户程序的工作模式,它运行在操作系统的用户态,它没有权限去操作其它硬件资源,只能执行处理自己的数据,也不能切换到其它模式下,要想访问硬件资源或切换到其它模式只能通过软中断或产生异常。

  • 快速中断模式(fiq):快速中断模式是相对一般中断模式而言的,用来处理高优先级中断的模式,处理对时间要求比较紧急的中断请求,主要用于高速数据传输及通道处理中。

  • 普通中断模式(irq):一般中断模式也叫普通中断模式,用于处理一般的中断请求,通常在硬件产生中断信号之后自动进入该模式,该模式可以自由访问系统硬件资源。

  • 管理模式(svc):操作系统保护模式,CPU上电复位和当应用程序执行 SVC 指令调用系统服务时也会进入此模式,操作系统内核的普通代码通常工作在这个模式下。

  • 终止模式(abt):当数据或指令预取终止时进入该模式,中止模式用于支持虚拟内存或存储器保护,当用户程序访问非法地址,没有权限读取的内存地址时,会进入该模式,

  • 系统模式(sys):供操作系统使用的高特权用户模式,与用户模式类似,但具有可以直接切换到其他模式等特权,用户模式与系统模式两者使用相同的寄存器,都没有SPSR(Saved Program Statement Register,已保存程序状态寄存器),但系统模式比用户模式有更高的权限,可以访问所有系统资源。

  • 未定义模式(und):未定义模式用于支持硬件协处理器的软件仿真,CPU在指令的译码阶段不能识别该指令操作时,会进入未定义模式。

除用户模式外,其余6种工作模式都属于特权模式

  • 特权模式中除了系统模式以外的其余5种模式称为异常模式
  • 大多数程序运行于用户模式
  • 进入特权模式是为了处理中断、异常、或者访问被保护的系统资源
  • 硬件权限级别:系统模式 > 异常模式 > 用户模式
  • 快中断(fiq)与慢中断(irq)区别:快中断处理时禁止中断

每种模式都有自己独立的入口和独立的运行栈空间. 系列篇之CPU篇 已介绍过只要提供了入口函数和运行空间,CPU就可以干活了.入口函数解决了指令来源问题,运行空间解决了指令的运行场地问题.
而且在多核情况下,每个CPU核的每种特权模式都有自己独立的栈空间.注意是特权模式下的栈空间,用户模式的栈空间是由用户(应用)程序提供的.

官方概念

异常接管是操作系统对运行期间发生的异常情况(芯片硬件异常)进行处理的一系列动作,例如打印异常发生时当前函数的调用栈信息、CPU现场信息、任务的堆栈情况等。
异常接管作为一种调测手段,可以在系统发生异常时给用户提供有用的异常信息,譬如异常类型、发生异常时的系统状态等,方便用户定位分析问题。

鸿蒙的异常接管,在系统发生异常时的处理动作为:显示异常发生时正在运行的任务信息(包括任务名、任务号、堆栈大小等),以及CPU现场等信息。

进入和退出异常方式

异常接管切换需要处理好两件事:

  • 一个是代码要切到哪个位置,也就是要重置PC寄存器,每种异常模式下的切换方式如图:

鸿蒙内核源码分析(异常接管篇) | 社会很单纯 , 复杂的是人 | 百篇博客分析HarmonyOS源码 | v39.03_第1张图片

  • 另一个是要恢复每种模式的状态,即 CPSR(1个)SPSR(共5个) 的关系,对M[4:0]的修改,如图:
    在这里插入图片描述

以下是M[4:0]在每种模式下具体操作方式:

鸿蒙内核源码分析(异常接管篇) | 社会很单纯 , 复杂的是人 | 百篇博客分析HarmonyOS源码 | v39.03_第2张图片
鸿蒙内核源码分析(异常接管篇) | 社会很单纯 , 复杂的是人 | 百篇博客分析HarmonyOS源码 | v39.03_第3张图片

栈帧

每个函数都有自己的栈空间,称为栈帧。调用函数时,会创建子函数的栈帧,同时将函数入参、局部变量、寄存器入栈。栈帧从高地址向低地址生长,也就是说栈底是高地址,栈顶是底地址. 详见 系列篇之用栈方式篇

ARM32 CPU架构为例,每个栈帧中都会保存PCLRSPFP寄存器的历史值。
堆栈分析原理如下图所示,实际堆栈信息根据不同CPU架构有所差异,此处仅做示意。
图中不同颜色的寄存器表示不同的函数。可以看到函数调用过程中,寄存器的保存。通过FP寄存器,栈回溯到异常函数的父函数,继续按照规律对栈进行解析,推出函数调用关系,方便用户定位问题。
鸿蒙内核源码分析(异常接管篇) | 社会很单纯 , 复杂的是人 | 百篇博客分析HarmonyOS源码 | v39.03_第4张图片

解读

  • LR寄存器(Link Register),链接寄存器,指向函数的返回地址。

  • R11:可以用作通用寄存器,在开启特定编译选项时可以用作帧指针寄存器FP,用来实现栈回溯功能。
    GNU编译器(gcc)默认将R11作为存储变量的通用寄存器,因而默认情况下无法使用FP的栈回溯功能。为支持调用栈解析功能,需要在编译参数中添加-fno-omit-frame-pointer选项,提示编译器将R11作为FP使用。

  • FP寄存器(Frame Point),帧指针寄存器,指向当前函数的父函数的栈帧起始地址。利用该寄存器可以得到父函数的栈帧,从栈帧中获取父函数的FP,就可以得到祖父函数的栈帧,以此类推,可以追溯程序调用栈,得到函数间的调用关系。
    当系统发生异常时,系统打印异常函数的栈帧中保存的寄存器内容,以及父函数、祖父函数的栈帧中的LR、FP寄存器内容,用户就可以据此追溯函数间的调用关系,定位异常原因。

六种异常模式实现代码

/* Define exception type ID */		//ARM处理器一共有7种工作模式,除了用户和系统模式其余都叫异常工作模式
#define OS_EXCEPT_RESET          0x00	//重置功能,例如:开机就进入CPSR_SVC_MODE模式
#define OS_EXCEPT_UNDEF_INSTR    0x01	//未定义的异常,就是others
#define OS_EXCEPT_SWI            0x02	//软中断
#define OS_EXCEPT_PREFETCH_ABORT 0x03	//预取异常(取指异常), 指令三步骤: 取指,译码,执行, 
#define OS_EXCEPT_DATA_ABORT     0x04	//数据异常
#define OS_EXCEPT_FIQ            0x05	//快中断异常
#define OS_EXCEPT_ADDR_ABORT     0x06	//地址异常
#define OS_EXCEPT_IRQ            0x07	//普通中断异常

地址异常处理(Address abort)

@ Description: Address abort exception handler
_osExceptAddrAbortHdl: @地址异常处理
    SUB     LR, LR, #8                                       @ LR offset to return from this exception: -8.
    STMFD   SP, {
     R0-R7}                                      @ Push working registers, but don`t change SP.

    MOV     R0, #OS_EXCEPT_ADDR_ABORT                        @ Set exception ID to OS_EXCEPT_ADDR_ABORT.

    B       _osExceptDispatch                                @跳到异常分发统一处理

快中断处理(fiq)

@ Description: Fast interrupt request exception handler
_osExceptFiqHdl: @快中断异常处理
    SUB     LR, LR, #4                                       @ LR offset to return from this exception: -4.
    STMFD   SP, {
     R0-R7}                                      @ Push working registers.

    MOV     R0, #OS_EXCEPT_FIQ                               @ Set exception ID to OS_EXCEPT_FIQ.

    B       _osExceptDispatch                                @ Branch to global exception handler.

解读

  • 快中断处理时需禁用普通中断

取指异常(Prefectch abort)

@ Description: Prefectch abort exception handler
_osExceptPrefetchAbortHdl:
#ifdef LOSCFG_GDB
#if __LINUX_ARM_ARCH__ >= 7
    GDB_HANDLE OsPrefetchAbortExcHandleEntry
#endif
#else
    SUB     LR, LR, #4                                       @ LR offset to return from this exception: -4.
    STMFD   SP, {
     R0-R7}                                      @ Push working registers, but don`t change SP.
    MOV     R5, LR
    MRS     R1, SPSR

    MOV     R0, #OS_EXCEPT_PREFETCH_ABORT                    @ Set exception ID to OS_EXCEPT_PREFETCH_ABORT.

    AND     R4, R1, #CPSR_MASK_MODE                          @ Interrupted mode
    CMP     R4, #CPSR_USER_MODE                              @ User mode
    BEQ     _osExcPageFault                                   @ Branch if user mode

_osKernelExceptPrefetchAbortHdl:
    MOV     LR, R5
    B       _osExceptDispatch                                @ Branch to global exception handler.
#endif

数据访问异常(Data abort)

@ Description: Data abort exception handler
_osExceptDataAbortHdl: @数据异常处理,缺页就属于数据异常
#ifdef LOSCFG_GDB
#if __LINUX_ARM_ARCH__ >= 7
    GDB_HANDLE OsDataAbortExcHandleEntry
#endif
#else
    SUB     LR, LR, #8                                       @ LR offset to return from this exception: -8.
    STMFD   SP, {
     R0-R7}                                      @ Push working registers, but don`t change SP.
    MOV     R5, LR
    MRS     R1, SPSR

    MOV     R0, #OS_EXCEPT_DATA_ABORT                        @ Set exception ID to OS_EXCEPT_DATA_ABORT.

    B     _osExcPageFault   @跳到缺页异常处理
#endif

软中断处理(swi)

@ Description: Software interrupt exception handler
_osExceptSwiHdl: @软中断异常处理
    SUB     SP, SP, #(4 * 16)	@先申请16个栈空间用于处理本次软中断
    STMIA   SP, {
     R0-R12}		@保存R0-R12寄存器值
    MRS     R3, SPSR			@读取本模式下的SPSR值
    MOV     R4, LR				@保存回跳寄存器LR

    AND     R1, R3, #CPSR_MASK_MODE                          @ Interrupted mode 获取中断模式
    CMP     R1, #CPSR_USER_MODE                              @ User mode	是否为用户模式
    BNE     OsKernelSVCHandler                               @ Branch if not user mode 非用户模式下跳转
	@ 当为用户模式时,获取SP和LR寄出去值
    @ we enter from user mode, we need get the values of  USER mode r13(sp) and r14(lr).
    @ stmia with ^ will return the user mode registers (provided that r15 is not in the register list).
    MOV     R0, SP											 @获取SP值,R0将作为OsArmA32SyscallHandle的参数
    STMFD   SP!, {
     R3}                                        @ Save the CPSR 入栈保存CPSR值
    ADD     R3, SP, #(4 * 17)                                @ Offset to pc/cpsr storage 跳到PC/CPSR存储位置
    STMFD   R3!, {
     R4}                                        @ Save the CPSR and r15(pc) 保存LR寄存器
    STMFD   R3, {
     R13, R14}^                                  @ Save user mode r13(sp) and r14(lr) 保存用户模式下的SP和LR寄存器
    SUB     SP, SP, #4
    PUSH_FPU_REGS R1	@保存中断模式(用户模式模式)											

    MOV     FP, #0                                           @ Init frame pointer
    CPSIE   I	@开中断,表明在系统调用期间可响应中断
    BLX     OsArmA32SyscallHandle	/*交给C语言处理系统调用*/
    CPSID   I	@执行后续指令前必须先关中断

    POP_FPU_REGS R1											 @弹出FP值给R1
    ADD     SP, SP,#4										 @ 定位到保存旧SPSR值的位置
    LDMFD   SP!, {
     R3}                                        @ Fetch the return SPSR 弹出旧SPSR值
    MSR     SPSR_cxsf, R3                                    @ Set the return mode SPSR 恢复该模式下的SPSR值

    @ we are leaving to user mode, we need to restore the values of USER mode r13(sp) and r14(lr).
    @ ldmia with ^ will return the user mode registers (provided that r15 is not in the register list)

    LDMFD   SP!, {
     R0-R12}									 @恢复R0-R12寄存器
    LDMFD   SP, {
     R13, R14}^                                  @ Restore user mode R13/R14 恢复用户模式的R13/R14寄存器
    ADD     SP, SP, #(2 * 4)								 @定位到保存旧PC值的位置
    LDMFD   SP!, {
     PC}^                                       @ Return to user 切回用户模式运行

普通中断处理(irq)

OsIrqHandler:	@硬中断处理,此时已切换到硬中断栈
    SUB     LR, LR, #4
    /* push r0-r3 to irq stack */
    STMFD   SP, {
     R0-R3}		@r0-r3寄存器入 irq 栈
    SUB     R0, SP, #(4 * 4)@r0 = sp - 16
    MRS     R1, SPSR		@获取程序状态控制寄存器
    MOV     R2, LR			@r2=lr

    /* disable irq, switch to svc mode */@超级用户模式(SVC 模式),主要用于 SWI(软件中断)OS(操作系统)。
    CPSID   i, #0x13				@切换到SVC模式,此处一切换,后续指令将入SVC的栈
									@CPSID i为关中断指令,对应的是CPSIE
    /* push spsr and pc in svc stack */
    STMFD   SP!, {
     R1, R2} @实际是将 SPSR,和LR入栈,入栈顺序为 R1,R2,SP自增
    STMFD   SP, {
     LR}	  @LR再入栈,SP不自增

    AND     R3, R1, #CPSR_MASK_MODE	@获取CPU的运行模式
    CMP     R3, #CPSR_USER_MODE		@中断是否发生在用户模式
    BNE     OsIrqFromKernel			@中断不发生在用户模式下则跳转到OsIrqFromKernel

    /* push user sp, lr in svc stack */
    STMFD   SP, {
     R13, R14}^ 		@sp和LR入svc栈

解读

  • 普通中断处理时可以响应快中断

未定义异常处理(undef)

@ Description: Undefined instruction exception handler
_osExceptUndefInstrHdl:@出现未定义的指令处理
#ifdef LOSCFG_GDB
    GDB_HANDLE OsUndefIncExcHandleEntry
#else
                                                              @ LR offset to return from this exception:  0.
    STMFD   SP, {
     R0-R7}                                       @ Push working registers, but don`t change SP.

    MOV     R0, #OS_EXCEPT_UNDEF_INSTR                        @ Set exception ID to OS_EXCEPT_UNDEF_INSTR.

    B       _osExceptDispatch                                 @ Branch to global exception handler.

#endif

异常分发统一处理

_osExceptDispatch: @异常模式统一分发处理
    MRS     R2, SPSR                                         @ Save CPSR before exception.
    MOV     R1, LR                                           @ Save PC before exception.
    SUB     R3, SP, #(8 * 4)                                 @ Save the start address of working registers.

    MSR     CPSR_c, #(CPSR_INT_DISABLE | CPSR_SVC_MODE)      @ Switch to SVC mode, and disable all interrupts
    MOV     R5, SP
    EXC_SP_SET __exc_stack_top, OS_EXC_STACK_SIZE, R6, R7

    STMFD   SP!, {
     R1}                                        @ Push Exception PC
    STMFD   SP!, {
     LR}                                        @ Push SVC LR
    STMFD   SP!, {
     R5}                                        @ Push SVC SP
    STMFD   SP!, {
     R8-R12}                                    @ Push original R12-R8,
    LDMFD   R3!, {
     R4-R11}                                    @ Move original R7-R0 from exception stack to original stack.
    STMFD   SP!, {
     R4-R11}
    STMFD   SP!, {
     R2}                                        @ Push task`s CPSR (i.e. exception SPSR).

    CMP     R0, #OS_EXCEPT_DATA_ABORT 		@是数据异常吗?
    BNE     1f 								@不是跳到 锚点1处
    MRC     P15, 0, R8, C6, C0, 0 			@R8=C6(内存失效的地址) 0(访问数据失效)
    MRC     P15, 0, R9, C5, C0, 0 			@R9=C5(内存失效的状态) 0(无效整个指令cache)
    B       3f 								@跳到锚点3处执行
1:  CMP     R0, #OS_EXCEPT_PREFETCH_ABORT 	@是预取异常吗?
    BNE     2f 								@不是跳到 锚点2处
    MRC     P15, 0, R8, C6, C0, 2 			@R8=C6(内存失效的地址) 2(访问指令失效)
    MRC     P15, 0, R9, C5, C0, 1 			@R9=C5(内存失效的状态) 1(虚拟地址)
    B       3f 								@跳到锚点3处执行
2:  MOV     R8, #0
    MOV     R9, #0

3:  AND     R2, R2, #CPSR_MASK_MODE 
    CMP     R2, #CPSR_USER_MODE                              @ User mode
    BNE     4f @不是用户模式
    STMFD   SP, {
     R13, R14}^                                  @ save user mode sp and lr
4:
    SUB     SP, SP, #(4 * 2) @sp=sp-(4*2)

非常重要的ARM37个寄存器

在这里插入图片描述

详见 系列篇之寄存器篇

结尾

以上为异常接管对应的代码处理,具体每种异常发生的场景和代码细节处理,因内容太多,太复杂,系列篇后续将分篇一一分析.敬请关注!

鸿蒙源码百篇博客 往期回顾

  • v44.03 (中断管理篇) | 硬中断的实现<>观察者模式 < csdn | harmony | 掘金 >

  • v43.03 (中断概念篇) | 外人眼中权势滔天的当红海公公 < csdn | harmony | 掘金 >

  • v42.03 (中断切换篇) | 中断切换到底在切换什么? < csdn | harmony | 掘金 >

  • v41.03 (任务切换篇) | 汇编逐行注解分析任务上下文 < csdn | harmony | 掘金 >

  • v40.03 (汇编汇总篇) | 所有的汇编代码都在这里 < csdn | harmony | 掘金 >

  • v39.03 (异常接管篇) | 社会很单纯,复杂的是人 < csdn | harmony | 掘金 >

  • v38.03 (寄存器篇) | ARM所有寄存器一网打尽,不再神秘 < csdn | harmony | 掘金 >

  • v37.03 (系统调用篇) | 全盘解剖系统调用实现过程 < csdn | harmony | 掘金 >

  • v36.03 (工作模式篇) | CPU是韦小宝,有哪七个老婆? < csdn | harmony | 掘金 >

  • v35.03 (时间管理篇) | Tick是操作系统的基本时间单位 < csdn | harmony | 掘金 >

  • v34.03 (原子操作篇) | 是谁在为原子操作保驾护航? < csdn | harmony | 掘金 >

  • v33.03 (消息队列篇) | 进程间如何异步解耦传递大数据 ? < csdn | harmony | 掘金 >

  • v32.03 (CPU篇) | 内核是如何描述CPU的? < csdn | harmony | 掘金 >

  • v31.03 (定时器篇) | 内核最高优先级任务是谁? < csdn | harmony | 掘金 >

  • v30.03 (事件控制篇) | 任务间多对多的同步方案 < csdn | harmony | 掘金 >

  • v29.03 (信号量篇) | 信号量解决任务同步问题 < csdn | harmony | 掘金 >

  • v28.03 (进程通讯篇) | 进程间通讯有哪九大方式? < csdn | harmony | 掘金 >

  • v27.03 (互斥锁篇) | 互斥锁比自旋锁可丰满许多 < csdn | harmony | 掘金 >

  • v26.03 (自旋锁篇) | 想为自旋锁立贞节牌坊! < csdn | harmony | 掘金 >

  • v25.03 (并发并行篇) | 怎么记住并发并行的区别? < csdn | harmony | 掘金 >

  • v24.03 (进程概念篇) | 进程在管理哪些资源? < csdn | harmony | 掘金 >

  • v23.02 (汇编传参篇) | 汇编如何传递复杂的参数? < csdn | harmony | 掘金 >

  • v22.02 (汇编基础篇) | CPU在哪里打卡上班? < csdn | harmony | 掘金 >

  • v21.02 (线程概念篇) | 是谁在不断的折腾CPU? < csdn | harmony | 掘金 >

  • v20.02 (用栈方式篇) | 栈是构建底层运行的基础 < csdn | harmony | 掘金 >

  • v19.02 (位图管理篇) | 为何进程和线程优先级都是32个? < csdn | harmony | 掘金 >

  • v18.02 (源码结构篇) | 内核500问你能答对多少? < csdn | harmony | 掘金 >

  • v17.02 (物理内存篇) | 这样记伙伴算法永远不会忘 < csdn | harmony | 掘金 >

  • v16.02 (内存规则篇) | 内存管理到底在管什么? < csdn | harmony | 掘金 >

  • v15.02 (内存映射篇) | 什么是内存最重要的实现基础 ? < csdn | harmony | 掘金 >

  • v14.02 (内存汇编篇) | 什么是虚拟内存的实现基础? < csdn | harmony | 掘金 >

  • v13.02 (源码注释篇) | 热爱是所有的理由和答案 < csdn | harmony | 掘金 >

  • v12.02 (内存管理篇) | 虚拟内存全景图是怎样的? < csdn | harmony | 掘金 >

  • v11.02 (内存分配篇) | 内存有哪些分配方式? < csdn | harmony | 掘金 >

  • v10.02 (内存主奴篇) | 紫禁城的主子和奴才如何相处? < csdn | harmony | 掘金 >

  • v09.02 (调度故事篇) | 用故事说内核调度 < csdn | harmony | 掘金 >

  • v08.02 (总目录) | 百万汉字注解 百篇博客分析 < csdn | harmony | 掘金 >

  • v07.02 (调度机制篇) | 任务是如何被调度执行的? < csdn | harmony | 掘金 >

  • v06.02 (调度队列篇) | 就绪队列对调度的作用 < csdn | harmony | 掘金 >

  • v05.02 (任务管理篇) | 谁在让CPU忙忙碌碌? < csdn | harmony | 掘金 >

  • v04.02 (任务调度篇) | 任务是内核调度的单元 < csdn | harmony | 掘金 >

  • v03.02 (时钟任务篇) | 触发调度最大的动力来自哪里? < csdn | harmony | 掘金 >

  • v02.02 (进程管理篇) | 进程是内核资源管理单元 < csdn | harmony | 掘金 >

  • v01.09 (双向链表篇) | 谁是内核最重要结构体? < csdn | harmony | 掘金 >

参与贡献

  • 访问注解仓库地址

  • Fork 本仓库 >> 新建 Feat_xxx 分支 >> 提交代码注解 >> 新建 Pull Request

  • 新建 Issue

喜欢请大方 点赞+关注+收藏 吧

  • 公众号: 鸿蒙内核源码分析

  • 各大站点搜 “鸿蒙内核源码分析” .欢迎转载,请注明出处.

你可能感兴趣的:(鸿蒙内核源码分析,鸿蒙内核源码分析,百万汉字注解,百篇博客分析,内核,操作系统)