到这我们已经分享第三期Python机器学习方向的面试题了,是不是感觉前两期的面试题非常有用呢?最后一期20道题送给大家。
基于经验数据的特性而设计和开发的算法被称为机器学习。而人工智能不但包括机器学习,还包括诸如知识表示,自然语言处理,规划,机器人技术等其它方法。
在机器学习中,分类器是指输入离散或连续特征值的向量,并输出单个离散值或者类型的系统。
朴素贝叶斯分类器将会比判别模型,譬如逻辑回归收敛得更快,因此你只需要更少的训练数据。其主要缺点是它学习不了特征间的交互关系。
模式识别被应用在:计算机视觉、语言识别、统计、数据挖掘、非正式检索、生物信息学。
遗传编程的机器学习中两种常用的方法之一。该模型是基于测试,并在一系列的结果当中,获取最佳选择。
归纳逻辑程序设计(ILP)是利用逻辑程序设计表达的背景知识和实例,它是机器学习的一个分支。
在不同的数学模型中,选择用于描述相同的数据集的模型的过程被称为模型选择。模型选择吧被应用于统计,机器学习和数据挖掘的等相关领域。
支持向量机是一种监督学习算法,适用于分类和回归分析。
关系评价技术的重要组成部分如下:数据采集、地面实况采集、交叉验证技术、查询类型、评分标准、显着性检验。
都不是。对于时间序列问题,k倍可能会很麻烦,因为第4年或第5年的一些模式有可能跟第3年的不同,而对数据集的重复采样会将分离这些趋势,而我们最终可能只是需要对过去几年的进行验证,这就不能用这种方法了。相反,我们可以采用如下所示的5倍正向链接策略:
你的面试官应该非常了解很难在有限的内存上处理高维的数据。以下是你可以使用的处理方法:
1.由于我们的RAM很小,首先要关闭机器上正在运行的其他程序,包括网页浏览器等,以确保大部分内存可以使用。
2.我们可以随机采样数据集。这意味着,我们可以创建一个较小的数据集,比如有1000个变量和30万行,然后做计算。
3.为了降低维度,我们可以把数值变量和分类变量分开,同时删掉相关联的变量。对于数值变量,我们将使用相关性分析;对于分类变量,我们可以用卡方检验。
4.另外,我们还可以使用PCA(主成分分析),并挑选可以解释在数据集中有最大偏差的成分。
5.利用在线学习算法,如VowpalWabbit(在Python中可用)是一个不错的选择。
6.利用Stochastic GradientDescent(随机梯度下降法)建立线性模型也很有帮助。
7.我们也可以用我们对业务的理解来估计各预测变量对响应变量的影响的大小。但是,这是一个主观的方法,如果没有找出有用的预测变量可能会导致信息的显著丢失。
不能够这样说。这是一个“因果关系和相关性”的经典案例。全球平均温度和海盗数量之间有可能有相关性,但基于这些信息,我们不能说因为全球平均气温的上升而导致了海盗的消失。我们不能断定海盗的数量减少是引起气候变化的原因,因为可能有其他因素(潜伏或混杂因素)影响了这一现象。
约有32%的数据将不受缺失值的影响。因为,由于数据分布在中位数附近,让我们先假设这是一个正态分布。我们知道,在一个正态分布中,约有68%的数据位于跟平均数(或众数、中位数)1个标准差范围内,那么剩下的约32%的数据是不受影响的。因此,约有32%的数据将不受缺失值的影响。
可以使用bagging算法(如随机森林)。因为,低偏差意味着模型的预测值接近实际值,换句话说,该模型有足够的灵活性,以模仿训练数据的分布。这样貌似很好,但是别忘了,一个灵活的模型没有泛化能力,意味着当这个模型用在对一个未曾见过的数据集进行测试的时候,它会令人很失望。在这种情况下,我们可以使用bagging算法(如随机森林),以解决高方差问题。bagging算法把数据集分成重复随机取样形成的子集。然后,这些样本利用单个学习算法生成一组模型。接着,利用投票(分类)或平均(回归)把模型预测结合在一起。另外,为了应对大方差,我们可以:
1.使用正则化技术,惩罚更高的模型系数,从而降低了模型的复杂性。
2.使用可变重要性图表中的前n个特征。可以用于当一个算法在数据集中的所有变量里很难寻找到有意义信号的时候。
最根本的区别是,随机森林算法使用bagging技术做出预测;而GBM是采用boosting技术做预测的。在bagging技术中,数据集用随机采样的方法被划分成n个样本。然后,使用单一的学习算法,在所有样本上建模。接着利用投票或者求平均来组合所得到的预测。bagging是平行进行的,而boosting是在第一轮的预测之后,算法将分类出错的预测加高权重,使得它们可以在后续一轮中得到校正。这种给予分类出错的预测高权重的顺序过程持续进行,一直到达到停止标准为止。随机森林通过减少方差(主要方式)提高模型的精度。生成树之间是不相关的,以把方差的减少最大化。在另一方面,GBM提高了精度,同时减少了模型的偏差和方差。
这种推荐引擎的基本想法来自于协同过滤。协同过滤算法考虑用于推荐项目的“用户行为”。它们利用的是其他用户的购买行为和针对商品的交易历史记录、评分、选择和购买信息。针对商品的其他用户的行为和偏好用来推荐项目(商品)给新用户。在这种情况下,项目(商品)的特征是未知的。
我们不用曼哈顿距离,因为它只计算水平或垂直距离,有维度的限制。另一方面,欧氏距离可用于任何空间的距离计算问题。因为,数据点可以存在于任何空间,欧氏距离是更可行的选择。例如:想象一下国际象棋棋盘,象或车所做的移动是由曼哈顿距离计算的,因为它们是在各自的水平和垂直方向做的运动。
我们可以使用下面的方法:
1.由于逻辑回归是用来预测概率的,我们可以用AUC-ROC曲线以及混淆矩阵来确定其性能。
2.此外,在逻辑回归中类似于校正R2的指标是AIC。AIC是对模型系数数量惩罚模型的拟合度量。因此,我们更偏爱有最小AIC的模型。
3.空偏差指的是只有截距项的模型预测的响应。数值越低,模型越好。残余偏差表示由添加自变量的模型预测的响应。数值越低,模型越好。
因为它假定所有的特征在数据集中的作用是同样重要和独立的。正如我们所知,这个假设在现实世界中是很不真实的,因此,说朴素贝叶斯真的很“朴素”。
据我们所知,组合的学习模型是基于合并弱的学习模型来创造一个强大的学习模型的想法。但是,只有当各模型之间没有相关性的时候组合起来后才比较强大。由于我们已经试了5个GBM也没有提高精度,表明这些模型是相关的。具有相关性的模型的问题是,所有的模型提供相同的信息。例如:如果模型1把User1122归类为1,模型2和模型3很有可能会做同样的分类。
本文来自千锋教育,转载请注明出处