hikaricp 连接池分析_Spring Boot如何使用HikariCP连接池详解

前言

Springboot让Java开发更加美好,更加简洁,更加简单。Spring Boot 2.x中使用HikariCP作为默认的数据连接池。 HikariCP使用Javassist字节码操作库来实现动态代理,优化并精简了字节码,同时内部使用 com.zaxxer.hikari.util.FastList 代替ArrayList、使用了更好的并发集合类 com.zaxxer.hikari.util.ConcurrentBag,“号称”是目前最快的数据库连接池。

下面话不多说了,来一起看看详细的介绍吧

基本使用

在Spring Boot 2.x中使用HikariCP十分简单,只需引入依赖implementation 'org.springframework.boot:spring-boot-starter-jdbc':

pluginManagement {

repositories {

gradlePluginPortal()

}

}

rootProject.name = 'datasource-config'

plugins {

id 'org.springframework.boot' version '2.1.3.RELEASE'

id 'java'

}

apply plugin: 'io.spring.dependency-management'

group = 'spring-boot-guides'

version = '0.0.1-SNAPSHOT'

sourceCompatibility = '1.8'

repositories {

mavenCentral()

}

dependencies {

implementation 'org.springframework.boot:spring-boot-starter-jdbc'

runtimeOnly 'com.h2database:h2'

testImplementation 'org.springframework.boot:spring-boot-starter-test'

}

配置文件如下:

spring:

datasource:

url: jdbc:h2:mem:demodb

username: sa

password:

hikari: # https://github.com/brettwooldridge/HikariCP (uses milliseconds for all time values)

maximumPoolSize: 10

minimumIdle: 2

idleTimeout: 600000

connectionTimeout: 30000

maxLifetime: 1800000

关于连接池的具体配置参数详见 HikariCP 。

示例代码如下:

package springbootguides.datasourceconfig;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.boot.CommandLineRunner;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;

import javax.sql.DataSource;

import java.sql.Connection;

@SpringBootApplication

public class DatasourceConfigApplication implements CommandLineRunner {

@Autowired

private DataSource datasource;

@Override

public void run(String... args) throws Exception {

try(Connection conn = datasource.getConnection()) {

System.out.println(conn);

}

}

public static void main(String[] args) {

SpringApplication.run(DatasourceConfigApplication.class, args);

}

}

实现原理

Spring Boot使用如下方式整合HikariCP:入口是 org.springframework.boot.autoconfigure.jdbc.DataSourceAutoConfiguration ,通过 org.springframework.boot.autoconfigure.jdbc.DataSourceConfiguration.Hikari 中的 @Bean 方式创建 com.zaxxer.hikari.HikariDataSource:

/**

* Hikari DataSource configuration.

*/

@ConditionalOnClass(HikariDataSource.class)

@ConditionalOnMissingBean(DataSource.class)

@ConditionalOnProperty(name = "spring.datasource.type", havingValue = "com.zaxxer.hikari.HikariDataSource", matchIfMissing = true)

static class Hikari {

@Bean

@ConfigurationProperties(prefix = "spring.datasource.hikari")

public HikariDataSource dataSource(DataSourceProperties properties) {

HikariDataSource dataSource = createDataSource(properties,

HikariDataSource.class);

if (StringUtils.hasText(properties.getName())) {

dataSource.setPoolName(properties.getName());

}

return dataSource;

}

}

@ConfigurationProperties(prefix = "spring.datasource.hikari")会自动把 spring.datasource.hikari.*相关的连接池配置信息注入到创建的HikariDataSource实例中。

HikariCP的监控和遥测

因为在我们的微服务体系中使用的监控系统是Prometheus,这里以Prometheus为例。

注意spring boot 2.0对spring boot 1.x的metrics进行了重构,不再向后兼容,主要是在spring-boot-acutator中使用了micrometer,支持了更多的监控系统:Atlas、Datadog、Ganglia、Graphite、Influx、JMX、NewRelic、Prometheus、SignalFx、StatsD、Wavefront。Spring boot 2.0的metrics对比spring boot 1.x除了引入micrometer外,更大的体现是支持了tag,这也说明Prometheus、Influx等支持Tag的时序监控数据模型的监控系统已经成为主流。

在前面示例中的build.gradle中加入如下依赖:

implementation 'org.springframework.boot:spring-boot-starter-web'

implementation 'org.springframework.boot:spring-boot-starter-actuator'

implementation 'io.micrometer:micrometer-registry-prometheus'

配置文件applycation.yaml中加入对actuator的配置:

management:

endpoints:

web:

exposure:

include: "health,info,prometheus"

server:

port: 8079

servlet:

context-path: /

注意这里引入了web和actuator依赖,通过配置 management.server.port 指定actuator的web端点为8089端口,通过 management.endpoints.include 对外开放 /actuator/prometheus ,在引入 io.micrometer:micrometer-registry-prometheus 依赖之后,端点 /actuator/prometheus 当即生效。

curl http://localhost:8079/actuator/prometheus | grep hikari

# TYPE hikaricp_connections_acquire_seconds summary

hikaricp_connections_acquire_seconds_count{pool="HikariPool-1",} 3.0

hikaricp_connections_acquire_seconds_sum{pool="HikariPool-1",} 0.001230082

# HELP hikaricp_connections_acquire_seconds_max Connection acquire time

# TYPE hikaricp_connections_acquire_seconds_max gauge

hikaricp_connections_acquire_seconds_max{pool="HikariPool-1",} 0.0

# HELP hikaricp_connections_min Min connections

# TYPE hikaricp_connections_min gauge

hikaricp_connections_min{pool="HikariPool-1",} 2.0

# TYPE hikaricp_connections_timeout_total counter

hikaricp_connections_timeout_total{pool="HikariPool-1",} 0.0

# HELP hikaricp_connections_pending Pending threads

# TYPE hikaricp_connections_pending gauge

hikaricp_connections_pending{pool="HikariPool-1",} 0.0

# HELP hikaricp_connections_usage_seconds Connection usage time

# TYPE hikaricp_connections_usage_seconds summary

hikaricp_connections_usage_seconds_count{pool="HikariPool-1",} 3.0

hikaricp_connections_usage_seconds_sum{pool="HikariPool-1",} 0.06

# HELP hikaricp_connections_usage_seconds_max Connection usage time

# TYPE hikaricp_connections_usage_seconds_max gauge

hikaricp_connections_usage_seconds_max{pool="HikariPool-1",} 0.0

# HELP hikaricp_connections_max Max connections

# TYPE hikaricp_connections_max gauge

hikaricp_connections_max{pool="HikariPool-1",} 10.0

# HELP hikaricp_connections Total connections

# TYPE hikaricp_connections gauge

hikaricp_connections{pool="HikariPool-1",} 2.0

# HELP hikaricp_connections_creation_seconds_max Connection creation time

# TYPE hikaricp_connections_creation_seconds_max gauge

hikaricp_connections_creation_seconds_max{pool="HikariPool-1",} 0.0

# HELP hikaricp_connections_creation_seconds Connection creation time

# TYPE hikaricp_connections_creation_seconds summary

hikaricp_connections_creation_seconds_count{pool="HikariPool-1",} 1.0

hikaricp_connections_creation_seconds_sum{pool="HikariPool-1",} 0.001

# HELP hikaricp_connections_idle Idle connections

# TYPE hikaricp_connections_idle gauge

hikaricp_connections_idle{pool="HikariPool-1",} 2.0

# HELP hikaricp_connections_active Active connections

# TYPE hikaricp_connections_active gauge

hikaricp_connections_active{pool="HikariPool-1",} 0.0

参考

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对脚本之家的支持。

你可能感兴趣的:(hikaricp,连接池分析)