- Flutter-完整开发实战详解(一、Dart-语言和-Flutter-基础)
2401_85122662
flutter
《Android学习笔记总结+最新移动架构视频+大厂安卓面试真题+项目实战源码讲义》完整开源地址:https://docs.qq.com/doc/DSkNLaERkbnFoS0ZF基本类型var可以定义变量,如vartag=“666”,这和JS、Kotlin等语言类似,同时Dart属于动态类型语言,支持闭包。Dart中number类型分为int和double,其中java中的long对应的也是Da
- 学习笔记:oracle online系列:oracle:Per-Process PGA memory limit
认真就输DBA
Oracle学习随笔学习笔记oracle
我们的文章会在微信公众号IT民工的龙马人生和博客网站(www.htz.pw)同步更新,欢迎关注收藏,也欢迎大家转载,但是请在文章开始地方标注文章出处,谢谢!由于博客中有大量代码,通过页面浏览效果更佳。本文转自朋友的真实案例分享。oracleonline系列:oracle:Per-ProcessPGAmemorylimit前几日,东区某客户的19crac出现了ORA-04030,从报错的trace来
- 机器学习知识点复习 上(保研、复试、面试)百面机器学习笔记
机器学习知识点复习上一、特征工程1.为什么需要对数值类型的特征做归一化?2.文本表示模型3.图像数据不足的处理方法二、模型评估1.常见的评估指标2.ROC曲线3.为什么在一些场景中要使用余弦相似度而不是欧氏距离?4.过拟合和欠拟合三、经典算法1.支持向量机SVM2.逻辑回归3.决策树四、降维1.主成分分析(PrinalComponentsAnalysis,PCA)降维中最经典的方法2.线性判别分析
- DPDK探测设备并初始化
分享放大价值
DPDKdpdkprobe设备初始化mmap
本文整理下之前的学习笔记,基于DPDK17.11版本源码分析。主要看一下DPDK探测网卡设备,并进行初始化的流程,用到了类似kernel中的总线-设备-驱动模型。本文的重点之一是DPDK如何在用户态操作网卡寄存器,这里先给个答案:想要操作网卡寄存器,需要用到网卡的基地址BAR,intel网卡一般使用BAR0就行,通过mmap此文件/sys/bus/pci/devices/'pciaddress'/
- 动手学深度学习13.7. 单发多框检测(SSD)-笔记&练习(PyTorch)
scdifsn
深度学习笔记pytorchssd单发多框检测(SSD)目标检测mAP评价
以下内容为结合李沐老师的课程和教材补充的学习笔记,以及对课后练习的一些思考,自留回顾,也供同学之人交流参考。本节课程地址:45SSD实现【动手学深度学习v2】_哔哩哔哩_bilibili本节教材地址:13.7.单发多框检测(SSD)—动手学深度学习2.0.0documentation本节开源代码:…>d2l-zh>pytorch>chapter_optimization>ssd.ipynb单发多框
- 动手学深度学习3.3线性回归的简洁实现-笔记&练习(PyTorch)
scdifsn
深度学习线性回归笔记pytorch
以下内容为结合李沐老师的课程和教材补充的学习笔记,以及对课后练习的一些思考,自留回顾,也供同学之人交流参考。本节课程地址:线性回归的简洁实现_哔哩哔哩_bilibili本节教材地址:3.3.线性回归的简洁实现—动手学深度学习2.0.0documentation(d2l.ai)本节开源代码:...>d2l-zh>pytorch>chapter_linear-networks>linear-regre
- Python学习笔记2-垃圾回收机制
Carrie_Lei
Pythonpython学习笔记
Python的垃圾回收机制是自动管理内存的系统,用于回收不再使用的内存,以避免内存泄漏和优化内存使用。Python使用引用计数(ReferenceCounting)和垃圾回收(GarbageCollection)两种方式来管理内存。1.引用计数(ReferenceCounting)引用计数是Python内存管理的基础机制。每个对象都维护一个引用计数器,记录有多少个引用指向该对象。当一个新的引用指向
- Python数据分析学习笔记:字符串统计
NIKEeri
pythonpandas字符串匹配python数据分析学习
一、题目来源KagglePandas-Exercise:SummaryFunctionsandMaps章节二、题目要求描述一瓶葡萄酒时,可用的词汇有限。哪种词出现频率更高:“tropical”还是“fruity”?统计description列中这两个词的出现次数。忽略大小写。三、我的思路(使用str.contains统计总次数)tropical_count=reviews['description
- 【机器学习|学习笔记】随机森林(Random Forest, RF)详解,附代码。
努力毕业的小土博^_^
机器学习基础算法优质笔记1机器学习学习笔记随机森林人工智能
【机器学习|学习笔记】随机森林(RandomForest,RF)详解,附代码。【机器学习|学习笔记】随机森林(RandomForest,RF)详解,附代码。文章目录【机器学习|学习笔记】随机森林(RandomForest,RF)详解,附代码。前言起源随机子空间法与Bagging的萌芽原理算法机制理论保障发展应用优缺点优点缺点Python实现示例(Scikit-learn)欢迎铁子们点赞、关注、收藏
- PyTorch深度学习快速入门教程【小土堆】详细学习笔记(第1-11个视频笔记)
胡说八道的Dr. Zhu
深度学习pytorch学习
本学习笔记源自于B站up主【我是土堆】的视频教程:PyTorch深度学习快速入门教程(绝对通俗易懂!)【小土堆】本博客是该视频教程中第1-11个视频的详细学习笔记,第12-22个视频、第23-33个视频的详细学习笔记链接如下:PyTorch深度学习快速入门教程【小土堆】详细学习笔记(第12-22个视频笔记)PyTorch深度学习快速入门教程【小土堆】详细学习笔记(第23-33个视频笔记)目录1、P
- 关于 Linux中系统调优的一些笔记
山河已无恙
Linux笔记Linux性能调优1024程序员节linux运维
写在前面推送的的邮件里看到有大佬讲的公共课,听了之后这里整理学习笔记。因为是公开课,所以讲的很浅,没接触过,这里做为了解,长长见识。博文内容包括系统调优原理概述如何检测系统的性能瓶颈如何进行内核参数调优如何限制服务的资源占用自定义tuned调优配置集我突然又明白,死亡是聪明的兄长,我们可以放心地把自己托付给他,他会知道在我们有所准备的适当时刻前来。我也突然懂得,原来痛苦、失望和悲愁不是为了惹恼我们
- CSC研修计划的书写
博主最近在申请CSC,所以也会更新一下自己的学习笔记,有需要的可以关注我一下,同时有问题大家可以一起交流一下啊一要求(fromCSC官网)①拟留学专业(研究课题)在国内外研究情况及水平;②拟选择的留学国别、留学单位及选择原因(应简单评述对方国家及留学单位在申请人所从事学科、专业领域的水平、优势,申请人及所在单位与对方有无合作基础及业务联系);③达到本次出国学习预期目标的可行性,结合本人目前从事的工
- 【机器学习笔记 Ⅱ】9 模型评估
巴伦是只猫
机器学习机器学习笔记人工智能
评估机器学习模型是确保其在实际应用中有效性和可靠性的关键步骤。以下是系统化的评估方法,涵盖分类、回归、聚类等任务的评估指标和技术:一、分类模型评估1.基础指标2.高级指标ROC-AUC:通过绘制真正例率(TPR)vs假正例率(FPR)曲线下面积评估模型整体性能。AUC=1:完美分类;AUC=0.5:随机猜测。适用于二分类及多分类(OvR或OvO策略)。混淆矩阵:可视化模型在各类别上的具体错误(如将
- 【机器学习笔记 Ⅱ】7 多类分类
巴伦是只猫
机器学习机器学习笔记分类
1.多类分类(Multi-classClassification)定义多类分类是指目标变量(标签)有超过两个类别的分类任务。例如:手写数字识别:10个类别(0~9)。图像分类:区分猫、狗、鸟等。新闻主题分类:政治、经济、体育等。特点互斥性:每个样本仅属于一个类别(区别于多标签分类)。输出要求:模型需输出每个类别的概率分布,且概率之和为1。实现方式One-vs-Rest(OvR):训练K个二分类器(
- 【DeepSeek开源周】Day 4:DualPipe & EPLB 学习笔记
蓝海星梦
DeepSeek开源周探秘开源学习笔记人工智能云计算分布式
目录一、DualPipe&EPLB概述二、DualPipe详解1.流水线并行策略(1)F-then-B策略(2)1F1B策略2.朴素流水线并行3.GPipe微批次流水线并行4.PipeStream5.ZBPP6.DualPipe7.DualPipeV8.流水线并行方案对比三、EPLB详解1.专家并行(EP)2.EPLB冗余专家策略3.负载均衡策略(1)分层负载均衡(2)全局负载均衡(3)接口和示例
- 【机器学习笔记 Ⅱ】4 神经网络中的推理
推理(Inference)是神经网络在训练完成后利用学到的参数对新数据进行预测的过程。与训练阶段不同,推理阶段不计算梯度也不更新权重,仅执行前向传播。以下是其实现原理和代码示例的完整解析:1.推理的核心步骤加载训练好的模型参数(权重和偏置)。前向传播:输入数据逐层计算,得到输出。后处理:根据任务类型解析输出(如分类取概率最大值,回归直接输出)。2.代码实现(Python+NumPy)(1)定义模型
- 【机器学习笔记 Ⅲ】3 异常检测算法
巴伦是只猫
机器学习机器学习笔记算法
异常检测算法(AnomalyDetection)详解异常检测是识别数据中显著偏离正常模式的样本(离群点)的技术,广泛应用于欺诈检测、故障诊断、网络安全等领域。以下是系统化的解析:1.异常类型类型描述示例点异常单个样本明显异常信用卡交易中的天价消费上下文异常在特定上下文中异常(如时间序列)夏季气温突降至零下集体异常一组相关样本联合表现为异常网络流量中突然的DDOS攻击流量2.常用算法(1)基于统计的
- 【机器学习笔记 Ⅲ】4 特征选择
巴伦是只猫
机器学习机器学习笔记人工智能
特征选择(FeatureSelection)系统指南特征选择是机器学习中优化模型性能的关键步骤,通过筛选最相关、信息量最大的特征,提高模型精度、降低过拟合风险并加速训练。以下是完整的特征选择方法论:1.特征选择的核心目标提升模型性能:去除噪声和冗余特征,增强泛化能力。降低计算成本:减少训练和预测时间。增强可解释性:简化模型,便于业务理解。2.特征选择方法分类(1)过滤法(FilterMethods
- 机器学习笔记二-回归
回归是统计学和机器学习中的一种基本方法,用于建模变量之间的关系,特别是用一个或多个自变量(输入变量)来预测一个因变量(输出变量)的值。回归分析广泛应用于预测、趋势分析和关联研究中。根据目标和数据的性质,可以使用不同类型的回归方法。1.回归的基本概念:自变量(IndependentVariable):也称为预测变量、解释变量,是模型中的输入变量,用于预测或解释因变量的变化。因变量(Dependent
- OpenHarmony解读之设备认证:Pake协议详解与实战
陈乔布斯
鸿蒙开发HarmonyOSOpenHarmonyharmonyos分布式鸿蒙开发软总线openHarmony嵌入式硬件
往期推文全新看点(文中附带最新·鸿蒙全栈学习笔记)①鸿蒙应用开发与鸿蒙系统开发哪个更有前景?②嵌入式开发适不适合做鸿蒙南向开发?看完这篇你就了解了~③对于大前端开发来说,转鸿蒙开发究竟是福还是祸?④鸿蒙岗位需求突增!移动端、PC端、IoT到底该怎么选?⑤记录一场鸿蒙开发岗位面试经历~⑥持续更新中……一、概述在设备认证过程中,pake协议用于认证会话密钥协商,基于该会话密钥,双方可以安全地交换各自的
- 【ESP32最全学习笔记(基础篇)——7.ESP32 ADC – 使用 Arduino IDE 读取模拟值】
「已注销」
ESP32学习笔记学习ESP32单片机嵌入式硬件Arduino
关于本教程:ESP32基础篇1.ESP32简介2.ESP32Arduino集成开发环境3.VS代码和PlatformIO4.ESP32引脚5.ESP32输入输出6.ESP32脉宽调制7.ESP32模拟输入☑8.ESP32中断定时器9.ESP32深度睡眠
- 计算机网络(网页显示过程,TCP三次握手,HTTP1.0,1.1,2.0,3.0,JWT cookie)
老虎0627
计算机网络计算机网络tcp/ip网络协议
前言最近一直在看后端开发的面经,里面涉及到了好多计算机网络的知识,在这里以问题的形式写一个学习笔记(其中参考了:JavaGuide和小林coding这两个很好的学习网站)1.当键入网址后,到网页显示,其间发生了什么?(1)首先浏览器会解析URL。(如确定协议像Http或Https)(2)然后通过DNS服务器把域名解析为IP地址。(找到服务器啦)(3)接着TCP协议三次握手和服务器建立连接。(客户端
- PyQt5—QTextEdit 学习笔记
寄思~
Python——PyQt5笔记qt学习笔记python
第二章控件学习一、QTextEdit基础认知QTextEdit是PyQt/PySide框架中用于处理富文本内容的强大控件,它不仅支持纯文本编辑,还能处理HTML、图片等复杂内容,是开发文本编辑器、日志查看器等应用的核心组件。二、最简单的QTextEdit实现下面是一个创建QTextEdit并显示的基础案例,适合零基础入门:importsysfromPyQt5.QtWidgetsimportQApp
- 陈强《计量经济学及Stata应用》学习笔记——持续更新
WangSoooCute
学习笔记
1导论1.1什么是计量经济学econometrics几种关系:相关关系、因果关系、逆向因果关系reversecausality、双向因果关系被解释变量dependentvariable解释变量explanatoryvariable=regressor=自变量independentvariable=协变量covariateunobservable的误差项errorterm=随机扰动项stochast
- 医咖会免费STATA教程学习笔记——单因素方差分析
Unacandoit
stata单因素方差分析
单因素方差分析和单因素回归分析相同1.单因素方差分析需要满足的假设:(1)因变量为连续变量(2)至少有一个分类变量(大于等于2类)(3)观测值相互独立(4)没有异常值(5)服从正态分布(6)方差齐性2.准备工作(1)导入数据集:webusesystolic,clear(2)检验是否存在异常值:方法一:图形——箱线图——在变量中选择systolic——确定方法二:grahboxsystolic,ov
- 【机器学习笔记 Ⅱ】11 决策树模型
巴伦是只猫
机器学习机器学习笔记决策树
决策树模型(DecisionTree)详解决策树是一种树形结构的监督学习模型,通过一系列规则对数据进行分类或回归。其核心思想是模仿人类决策过程,通过不断提问(基于特征划分)逐步逼近答案。1.核心概念节点类型:根节点:起始问题(最佳特征划分点)。内部节点:中间决策步骤(特征判断)。叶节点:最终预测结果(类别或数值)。分支:对应特征的取值或条件判断(如“年龄≥30?”)。2.构建决策树的关键步骤(1)
- 【机器学习笔记 Ⅱ】10 完整周期
机器学习的完整生命周期(End-to-EndPipeline)机器学习的完整周期涵盖从问题定义到模型部署的全过程,以下是系统化的步骤分解和关键要点:1.问题定义(ProblemDefinition)目标:明确业务需求与机器学习任务的匹配性。关键问题:这是分类、回归、聚类还是强化学习问题?成功的标准是什么?(如准确率>90%、降低10%成本)输出:项目目标文档(含评估指标)。2.数据收集(DataC
- 【机器学习笔记Ⅰ】13 正则化代价函数
正则化代价函数(RegularizedCostFunction)详解正则化代价函数是机器学习中用于防止模型过拟合的核心技术,通过在原始代价函数中添加惩罚项,约束模型参数的大小,从而提高泛化能力。以下是系统化的解析:1.为什么需要正则化?过拟合问题:当模型过于复杂(如高阶多项式回归、深度神经网络)时,可能完美拟合训练数据但泛化性能差。解决方案:在代价函数中增加对参数的惩罚,抑制不重要的特征权重。2.
- 【机器学习笔记Ⅰ】6 多类特征
巴伦是只猫
机器学习机器学习笔记人工智能
多类特征(Multi-classFeatures)详解多类特征是指一个特征(变量)可以取多个离散的类别值,且这些类别之间没有内在的顺序关系。这类特征是机器学习中常见的数据类型,尤其在分类和回归问题中需要特殊处理。1.核心概念(1)什么是多类特征?定义:特征是离散的、有限的类别,且类别之间无大小或顺序关系。示例:颜色:红、绿、蓝(无顺序)。城市:北京、上海、广州(无数学意义的大小关系)。动物类别:猫
- 机器学习笔记——支持向量机
star_and_sun
机器学习笔记支持向量机
支持向量机参数模型对分布需要假设(这也是与非参数模型的区别之一)间隔最大化,形式转化为凸二次规划问题最大化间隔间隔最大化是意思:对训练集有着充分大的确信度来分类训练数据,最难以分的点也有足够大的信度将其分开间隔最大化的分离超平面的的求解怎么求呢?最终的方法如下1.线性可分的支持向量机的优化目标其实就是找得到分离的的超平面求得参数w和b的值就可以了注意,最大间隔分离超平面是唯一的,间隔叫硬间隔1.1
- ASM系列六 利用TreeApi 添加和移除类成员
lijingyao8206
jvm动态代理ASM字节码技术TreeAPI
同生成的做法一样,添加和移除类成员只要去修改fields和methods中的元素即可。这里我们拿一个简单的类做例子,下面这个Task类,我们来移除isNeedRemove方法,并且添加一个int 类型的addedField属性。
package asm.core;
/**
* Created by yunshen.ljy on 2015/6/
- Springmvc-权限设计
bee1314
springWebjsp
万丈高楼平地起。
权限管理对于管理系统而言已经是标配中的标配了吧,对于我等俗人更是不能免俗。同时就目前的项目状况而言,我们还不需要那么高大上的开源的解决方案,如Spring Security,Shiro。小伙伴一致决定我们还是从基本的功能迭代起来吧。
目标:
1.实现权限的管理(CRUD)
2.实现部门管理 (CRUD)
3.实现人员的管理 (CRUD)
4.实现部门和权限
- 算法竞赛入门经典(第二版)第2章习题
CrazyMizzz
c算法
2.4.1 输出技巧
#include <stdio.h>
int
main()
{
int i, n;
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", i);
return 0;
}
习题2-2 水仙花数(daffodil
- struts2中jsp自动跳转到Action
麦田的设计者
jspwebxmlstruts2自动跳转
1、在struts2的开发中,经常需要用户点击网页后就直接跳转到一个Action,执行Action里面的方法,利用mvc分层思想执行相应操作在界面上得到动态数据。毕竟用户不可能在地址栏里输入一个Action(不是专业人士)
2、<jsp:forward page="xxx.action" /> ,这个标签可以实现跳转,page的路径是相对地址,不同与jsp和j
- php 操作webservice实例
IT独行者
PHPwebservice
首先大家要简单了解了何谓webservice,接下来就做两个非常简单的例子,webservice还是逃不开server端与client端。我测试的环境为:apache2.2.11 php5.2.10做这个测试之前,要确认你的php配置文件中已经将soap扩展打开,即extension=php_soap.dll;
OK 现在我们来体验webservice
//server端 serve
- Windows下使用Vagrant安装linux系统
_wy_
windowsvagrant
准备工作:
下载安装 VirtualBox :https://www.virtualbox.org/
下载安装 Vagrant :http://www.vagrantup.com/
下载需要使用的 box :
官方提供的范例:http://files.vagrantup.com/precise32.box
还可以在 http://www.vagrantbox.es/
- 更改linux的文件拥有者及用户组(chown和chgrp)
无量
clinuxchgrpchown
本文(转)
http://blog.163.com/yanenshun@126/blog/static/128388169201203011157308/
http://ydlmlh.iteye.com/blog/1435157
一、基本使用:
使用chown命令可以修改文件或目录所属的用户:
命令
- linux下抓包工具
矮蛋蛋
linux
原文地址:
http://blog.chinaunix.net/uid-23670869-id-2610683.html
tcpdump -nn -vv -X udp port 8888
上面命令是抓取udp包、端口为8888
netstat -tln 命令是用来查看linux的端口使用情况
13 . 列出所有的网络连接
lsof -i
14. 列出所有tcp 网络连接信息
l
- 我觉得mybatis是垃圾!:“每一个用mybatis的男纸,你伤不起”
alafqq
mybatis
最近看了
每一个用mybatis的男纸,你伤不起
原文地址 :http://www.iteye.com/topic/1073938
发表一下个人看法。欢迎大神拍砖;
个人一直使用的是Ibatis框架,公司对其进行过小小的改良;
最近换了公司,要使用新的框架。听说mybatis不错;就对其进行了部分的研究;
发现多了一个mapper层;个人感觉就是个dao;
- 解决java数据交换之谜
百合不是茶
数据交换
交换两个数字的方法有以下三种 ,其中第一种最常用
/*
输出最小的一个数
*/
public class jiaohuan1 {
public static void main(String[] args) {
int a =4;
int b = 3;
if(a<b){
// 第一种交换方式
int tmep =
- 渐变显示
bijian1013
JavaScript
<style type="text/css">
#wxf {
FILTER: progid:DXImageTransform.Microsoft.Gradient(GradientType=0, StartColorStr=#ffffff, EndColorStr=#97FF98);
height: 25px;
}
</style>
- 探索JUnit4扩展:断言语法assertThat
bijian1013
java单元测试assertThat
一.概述
JUnit 设计的目的就是有效地抓住编程人员写代码的意图,然后快速检查他们的代码是否与他们的意图相匹配。 JUnit 发展至今,版本不停的翻新,但是所有版本都一致致力于解决一个问题,那就是如何发现编程人员的代码意图,并且如何使得编程人员更加容易地表达他们的代码意图。JUnit 4.4 也是为了如何能够
- 【Gson三】Gson解析{"data":{"IM":["MSN","QQ","Gtalk"]}}
bit1129
gson
如何把如下简单的JSON字符串反序列化为Java的POJO对象?
{"data":{"IM":["MSN","QQ","Gtalk"]}}
下面的POJO类Model无法完成正确的解析:
import com.google.gson.Gson;
- 【Kafka九】Kafka High Level API vs. Low Level API
bit1129
kafka
1. Kafka提供了两种Consumer API
High Level Consumer API
Low Level Consumer API(Kafka诡异的称之为Simple Consumer API,实际上非常复杂)
在选用哪种Consumer API时,首先要弄清楚这两种API的工作原理,能做什么不能做什么,能做的话怎么做的以及用的时候,有哪些可能的问题
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-归并排序
bylijinnan
java
import java.util.Arrays;
public class MergeSort {
public static void main(String[] args) {
int[] a={20,1,3,8,5,9,4,25};
mergeSort(a,0,a.length-1);
System.out.println(Arrays.to
- Netty源码学习-CompositeChannelBuffer
bylijinnan
javanetty
CompositeChannelBuffer体现了Netty的“Transparent Zero Copy”
查看API(
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/buffer/package-summary.html#package_description)
可以看到,所谓“Transparent Zero Copy”是通
- Android中给Activity添加返回键
hotsunshine
Activity
// this need android:minSdkVersion="11"
getActionBar().setDisplayHomeAsUpEnabled(true);
@Override
public boolean onOptionsItemSelected(MenuItem item) {
- 静态页面传参
ctrain
静态
$(document).ready(function () {
var request = {
QueryString :
function (val) {
var uri = window.location.search;
var re = new RegExp("" + val + "=([^&?]*)", &
- Windows中查找某个目录下的所有文件中包含某个字符串的命令
daizj
windows查找某个目录下的所有文件包含某个字符串
findstr可以完成这个工作。
[html]
view plain
copy
>findstr /s /i "string" *.*
上面的命令表示,当前目录以及当前目录的所有子目录下的所有文件中查找"string&qu
- 改善程序代码质量的一些技巧
dcj3sjt126com
编程PHP重构
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。让我们看一些基本的编程技巧: 尽量保持方法简短 尽管很多人都遵
- SharedPreferences对数据的存储
dcj3sjt126com
SharedPreferences简介: &nbs
- linux复习笔记之bash shell (2) bash基础
eksliang
bashbash shell
转载请出自出处:
http://eksliang.iteye.com/blog/2104329
1.影响显示结果的语系变量(locale)
1.1locale这个命令就是查看当前系统支持多少种语系,命令使用如下:
[root@localhost shell]# locale
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
- Android零碎知识总结
gqdy365
android
1、CopyOnWriteArrayList add(E) 和remove(int index)都是对新的数组进行修改和新增。所以在多线程操作时不会出现java.util.ConcurrentModificationException错误。
所以最后得出结论:CopyOnWriteArrayList适合使用在读操作远远大于写操作的场景里,比如缓存。发生修改时候做copy,新老版本分离,保证读的高
- HoverTree.Model.ArticleSelect类的作用
hvt
Web.netC#hovertreeasp.net
ArticleSelect类在命名空间HoverTree.Model中可以认为是文章查询条件类,用于存放查询文章时的条件,例如HvtId就是文章的id。HvtIsShow就是文章的显示属性,当为-1是,该条件不产生作用,当为0时,查询不公开显示的文章,当为1时查询公开显示的文章。HvtIsHome则为是否在首页显示。HoverTree系统源码完全开放,开发环境为Visual Studio 2013
- PHP 判断是否使用代理 PHP Proxy Detector
天梯梦
proxy
1. php 类
I found this class looking for something else actually but I remembered I needed some while ago something similar and I never found one. I'm sure it will help a lot of developers who try to
- apache的math库中的回归——regression(翻译)
lvdccyb
Mathapache
这个Math库,虽然不向weka那样专业的ML库,但是用户友好,易用。
多元线性回归,协方差和相关性(皮尔逊和斯皮尔曼),分布测试(假设检验,t,卡方,G),统计。
数学库中还包含,Cholesky,LU,SVD,QR,特征根分解,真不错。
基本覆盖了:线代,统计,矩阵,
最优化理论
曲线拟合
常微分方程
遗传算法(GA),
还有3维的运算。。。
- 基础数据结构和算法十三:Undirected Graphs (2)
sunwinner
Algorithm
Design pattern for graph processing.
Since we consider a large number of graph-processing algorithms, our initial design goal is to decouple our implementations from the graph representation
- 云计算平台最重要的五项技术
sumapp
云计算云平台智城云
云计算平台最重要的五项技术
1、云服务器
云服务器提供简单高效,处理能力可弹性伸缩的计算服务,支持国内领先的云计算技术和大规模分布存储技术,使您的系统更稳定、数据更安全、传输更快速、部署更灵活。
特性
机型丰富
通过高性能服务器虚拟化为云服务器,提供丰富配置类型虚拟机,极大简化数据存储、数据库搭建、web服务器搭建等工作;
仅需要几分钟,根据CP
- 《京东技术解密》有奖试读获奖名单公布
ITeye管理员
活动
ITeye携手博文视点举办的12月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
12月试读活动回顾:
http://webmaster.iteye.com/blog/2164754
本次技术图书试读活动获奖名单及相应作品如下:
一等奖(两名)
Microhardest:http://microhardest.ite